Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39.

  1. C M Edwards,
  2. J F Todd,
  3. M Mahmoudi,
  4. Z Wang,
  5. R M Wang,
  6. M A Ghatei and
  7. S R Bloom
  1. Imperial College School of Medicine Endocrine Unit, Hammersmith Hospital, London, UK.
    Diabetes 1999 Jan; 48(1): 86-93. https://doi.org/10.2337/diabetes.48.1.86
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Glucagon-like peptide 1(7-36) amide (GLP-1) is postulated to be the major physiological incretin in humans, but evidence is indirect. We report the first studies examining the physiological role of GLP-1 in the postprandial state in humans using the GLP-1 antagonist exendin 9-39. Exendin 9-39 completely blocked GLP-1-induced glucose-stimulated insulin release from perifused human islets of Langerhans. In healthy fasted volunteers, intravenous infusion of exendin 9-39 at 500 pmol x kg(-1) x min(-1) in the hyperglycemic state abolished the insulinotropic effect of a physiological dose of GLP-1 and fully reversed the glucose-lowering effect of GLP-1. Nine healthy subjects consumed a 150-g oral glucose tolerance test and were infused with 500 pmol x kg(-1) x min(-1) exendin 9-39 or saline. Exendin 9-39 increased the peak postprandial glucose level (exendin 9-39, 8.67 +/- 0.35 vs. saline, 7.67 +/- 0.35 mmol/l, P < or = 0.005) and increased postprandial plasma glucose incremental area under the curve by 35% (exendin 9-39, 152 +/- 19 vs. saline, 113 +/- 16 mmol x min x l(-1), P < or = 0.05). This could be explained as partly secondary to the blockade of glucose-induced suppression of glucagon and maybe also to an increased rate of gastric emptying. Thus, in humans exendin 9-39 acts as an antagonist of GLP-1 both in vitro and in vivo. When infused alone, exendin 9-39 causes a deterioration in postprandial glycemic control, suggesting that GLP-1 may be important for maintenance of normal postprandial glucose homeostasis in humans.

    Log in using your username and password

    Forgot your user name or password?

    Purchase access

    You may purchase access to this article. This will require you to create an account if you don't already have one.
    PreviousNext
    Back to top

    In this Issue

    January 1999, 48(1)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39.
    C M Edwards, J F Todd, M Mahmoudi, Z Wang, R M Wang, M A Ghatei, S R Bloom
    Diabetes Jan 1999, 48 (1) 86-93; DOI: 10.2337/diabetes.48.1.86

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39.
    C M Edwards, J F Todd, M Mahmoudi, Z Wang, R M Wang, M A Ghatei, S R Bloom
    Diabetes Jan 1999, 48 (1) 86-93; DOI: 10.2337/diabetes.48.1.86
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.