Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcast
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
Advertisement
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcast
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes.

  1. M E Cooper,
  2. D Vranes,
  3. S Youssef,
  4. S A Stacker,
  5. A J Cox,
  6. B Rizkalla,
  7. D J Casley,
  8. L A Bach,
  9. D J Kelly and
  10. R E Gilbert
  1. Department of Medicine, University of Melbourne, Austin and Repatriation Medical Centre, West Heidelberg, Victoria, Australia. cooper@austin.unimelb.edu.au
    Diabetes 1999 Nov; 48(11): 2229-2239. https://doi.org/10.2337/diabetes.48.11.2229
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    It has been suggested that the cytokine vascular endothelial growth factor (VEGF) has an important role in the pathogenesis of diabetic retinopathy, but its role in nephropathy has not been clearly demonstrated. Assessment of VEGF, 125I-VEGF binding, and vascular endothelial growth factor receptor-2 (VEGFR-2) in the kidney was performed after 3 and 32 weeks of streptozotocin-induced diabetes. Gene expression of both VEGF and VEGFR-2 was assessed by Northern blot analysis and the localization of the ligand and receptor was examined by in situ hybridization. VEGF and VEGFR-2 protein were also evaluated by immunohistochemistry. Binding of the radioligand 125I-VEGF was evaluated by in vitro and in vivo autoradiography. Diabetes was associated with increased renal VEGF gene expression. VEGF mRNA and protein were localized to the visceral epithelial cells of the glomerulus and to distal tubules and collecting ducts in both diabetic and nondiabetic rats. Renal VEGFR-2 mRNA was increased after 3 weeks of diabetes but not in long-term diabetes. In situ hybridization and immunohistochemical studies revealed that glomerular endothelial cells were the major site of VEGFR-2 expression. In addition, VEGFR-2 gene expression was detected in cortical and renomedullary interstitial cells and on endothelial cells of peritubular capillaries. There was an increase in 125I-VEGF binding sites after 3 but not 32 weeks of diabetes. The major VEGF binding sites were in the glomeruli. 125I-VEGF binding was also observed in medullary rays and in the renal papillae. These studies indicate an early and persistent increase in renal VEGF gene expression in association with experimental diabetes. In addition, an early and transient increase in renal VEGF receptors was also observed in diabetic rats. These findings are consistent with a role for VEGF in mediating some of the changes observed in the diabetic kidney.

    Log in using your username and password

    Forgot your user name or password?

    Purchase access

    You may purchase access to this article. This will require you to create an account if you don't already have one.
    PreviousNext
    Back to top
    Advertisement

    In this Issue

    November 1999, 48(11)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    Citation Tools
    Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes.
    M E Cooper, D Vranes, S Youssef, S A Stacker, A J Cox, B Rizkalla, D J Casley, L A Bach, D J Kelly, R E Gilbert
    Diabetes Nov 1999, 48 (11) 2229-2239; DOI: 10.2337/diabetes.48.11.2229

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes.
    M E Cooper, D Vranes, S Youssef, S A Stacker, A J Cox, B Rizkalla, D J Casley, L A Bach, D J Kelly, R E Gilbert
    Diabetes Nov 1999, 48 (11) 2229-2239; DOI: 10.2337/diabetes.48.11.2229
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF
    Advertisement

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • For Advertisers
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Scientific Sessions Abstracts
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org
    Advertisement

    © 2019 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.