Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats.

  1. Y Minokoshi,
  2. M S Haque and
  3. T Shimazu
  1. Department of Medical Biochemistry, Ehime University School of Medicine, Japan. minokosh@m.ehime-u.ac.jp
    Diabetes 1999 Feb; 48(2): 287-291. https://doi.org/10.2337/diabetes.48.2.287
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    We studied the effects of microinjection of leptin into the ventromedial hypothalamus (VMH) and lateral hypothalamus (LH) on glucose uptake in peripheral tissues in unanesthetized rats. The rate of glucose uptake was assessed in vivo by 2-[3H]deoxyglucose incorporation. Single injection of leptin into VMH increased glucose uptake in brown adipose tissue (BAT), heart, skeletal muscles, and spleen but not in white adipose tissue or skin. On the other hand, microinjection of leptin into LH had little effect on glucose uptake in those tissues. The plasma concentrations of glucose and insulin were unaltered by intrahypothalamic injection of leptin into either VMH or LH. Among skeletal muscles, the increase in glucose uptake induced by intrahypothalamic injection of leptin was greater in the soleus than in the extensor digitorum longus. Likewise, the increased glucose uptake in the gastrocnemius in response to leptin was more prominent in the red part than in the white part of the tissue. When surgical sympathetic denervation of the interscapular BAT was performed, the enhanced glucose uptake by BAT in response to intrahypothalamic leptin was completely suppressed. These findings suggest that intrahypothalamic injection of leptin preferentially increases glucose uptake by some peripheral tissues through activation of the VMH-sympathetic (or its neighboring medial hypothalamus-sympathetic) nervous system, thereby contributing to the maintenance of energy balance.

    Log in using your username and password

    Forgot your user name or password?

    Purchase access

    You may purchase access to this article. This will require you to create an account if you don't already have one.
    PreviousNext
    Back to top

    In this Issue

    February 1999, 48(2)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats.
    Y Minokoshi, M S Haque, T Shimazu
    Diabetes Feb 1999, 48 (2) 287-291; DOI: 10.2337/diabetes.48.2.287

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats.
    Y Minokoshi, M S Haque, T Shimazu
    Diabetes Feb 1999, 48 (2) 287-291; DOI: 10.2337/diabetes.48.2.287
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.