Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles.

  1. J Janson,
  2. R H Ashley,
  3. D Harrison,
  4. S McIntyre and
  5. P C Butler
  1. Department of Medical Sciences, University of Edinburgh, Scotland, UK.
    Diabetes 1999 Mar; 48(3): 491-498. https://doi.org/10.2337/diabetes.48.3.491
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    NIDDM is characterized by islet amyloid deposits and decreased beta-cell mass. Islet amyloid is derived from the locally expressed protein islet amyloid polypeptide (IAPP). While it is now widely accepted that abnormal aggregation of IAPP has a role in beta-cell death in NIDDM, the mechanism remains unknown. We hypothesized that small IAPP aggregates, rather than mature large amyloid deposits, are cytotoxic. Consistent with this hypothesis, freshly dissolved human (h)-IAPP was cytotoxic when added to dispersed mouse and human islet cells, provoking the formation of abnormal vesicle-like membrane structures in association with vacuolization and cell death. Human islet cell death occurred by both apoptosis and necrosis, predominantly between 24 and 48 h after exposure to h-IAPP. In contrast, the addition to dispersed islet cells of matured h-IAPP containing large amyloid deposits of organized fibrils was seldom associated with vesicle-like structures or features of cell death, even though the cells were often encased in the larger amyloid deposits. Based on these observations, we hypothesized that h-IAPP cytotoxicity is mediated by membrane damage induced by early h-IAPP aggregates. Consistent with this hypothesis, application of freshly dissolved h-IAPP to voltage-clamped planar bilayer membranes (a cell-free in vitro system) also caused membrane instability manifested as a marked increase in conductance, increased membrane electrical noise, and accelerated membrane breakage, effects that were absent using matured h-IAPP or rat IAPP solutions. Light-scattering techniques showed that membrane toxicity corresponded to h-IAPP aggregates containing approximately 25-6,000 IAPP molecules, an intermediate-sized amyloid particle that we term intermediate-sized toxic amyloid particles (ISTAPs). We conclude that freshly dissolved h-IAPP is cytotoxic and that this cytotoxicity is mediated through an interaction of ISTAPs with cellular membranes. Once ISTAPs mature into amyloid deposits comprising >10(6) molecules, the capacity of h-IAPP to cause membrane instability and islet cell death is significantly reduced or abolished. These data may have implications for the mechanism of cell death in other diseases characterized by local amyloid formation (such as Alzheimer's disease).

    PreviousNext
    Back to top

    In this Issue

    March 1999, 48(3)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles.
    J Janson, R H Ashley, D Harrison, S McIntyre, P C Butler
    Diabetes Mar 1999, 48 (3) 491-498; DOI: 10.2337/diabetes.48.3.491

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles.
    J Janson, R H Ashley, D Harrison, S McIntyre, P C Butler
    Diabetes Mar 1999, 48 (3) 491-498; DOI: 10.2337/diabetes.48.3.491
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.