Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcast
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
Advertisement
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcast
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects.

  1. S Jacob,
  2. J Machann,
  3. K Rett,
  4. K Brechtel,
  5. A Volk,
  6. W Renn,
  7. E Maerker,
  8. S Matthaei,
  9. F Schick,
  10. C D Claussen and
  11. H U Häring
  1. Department of Endocrinology and Metabolism, University of Tübingen, Germany.
    Diabetes 1999 May; 48(5): 1113-1119. https://doi.org/10.2337/diabetes.48.5.1113
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Insulin resistance plays an important role in the pathogenesis of type 2 diabetes; however, the multiple mechanisms causing insulin resistance are not yet fully understood. The aim of this study was to explore the possible contribution of intramyocellular lipid content in the pathogenesis of skeletal muscle insulin resistance. We compared insulin-resistant and insulin-sensitive subjects. To meet stringent matching criteria for other known confounders of insulin resistance, these individuals were selected from an extensively metabolically characterized group of 280 first-degree relatives of type 2 diabetic subjects. Some 13 lean insulin-resistant and 13 lean insulin-sensitive subjects were matched for sex, age, BMI, percent body fat, physical fitness, and waist-to-hip ratio. Insulin sensitivity was determined by the hyperinsulinemic-euglycemic clamp method (for insulin-resistant subjects, glucose metabolic clearance rate [MCR] was 5.77+/-0.28 ml x kg(-1) x min(-1) [mean +/- SE]; for insulin-sensitive subjects, MCR was 10.15+/-0.7 ml x kg(-1) x min(-1); P<0.002). Proton magnetic resonance spectroscopy (MRS) was used to measure intramyocellular lipid content (IMCL) in both groups. MRS studies demonstrated that in soleus muscle, IMCL was increased by 84% (11.8+/-1.6 vs. 6.4+/-0.59 arbitrary units; P = 0.008 ), and in tibialis anterior muscle, IMCL was increased by 57% (3.26+/-0.36 vs. 2.08+/-0.3 arbitrary units; P = 0.017) in the insulin-resistant offspring, whereas the extramyocellular lipid content and total muscle lipid content were not statistically different between the two groups. These data demonstrate that in these well-matched groups of lean subjects, IMCL is increased in insulin-resistant offspring of type 2 diabetic subjects when compared with an insulin-sensitive group matched for age, BMI, body fat distribution, percent body fat, and degree of physical fitness. These results indicate that increased IMCL represents an early abnormality in the pathogenesis of insulin resistance and suggest that increased IMCL may contribute to the defective glucose uptake in skeletal muscle in insulin-resistant subjects.

    PreviousNext
    Back to top
    Advertisement

    In this Issue

    May 1999, 48(5)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    Citation Tools
    Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects.
    S Jacob, J Machann, K Rett, K Brechtel, A Volk, W Renn, E Maerker, S Matthaei, F Schick, C D Claussen, H U Häring
    Diabetes May 1999, 48 (5) 1113-1119; DOI: 10.2337/diabetes.48.5.1113

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects.
    S Jacob, J Machann, K Rett, K Brechtel, A Volk, W Renn, E Maerker, S Matthaei, F Schick, C D Claussen, H U Häring
    Diabetes May 1999, 48 (5) 1113-1119; DOI: 10.2337/diabetes.48.5.1113
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF
    Advertisement

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • For Advertisers
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Scientific Sessions Abstracts
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org
    Advertisement

    © 2019 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.