Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice.

  1. T Nakagawa,
  2. A Tsuchida,
  3. Y Itakura,
  4. T Nonomura,
  5. M Ono,
  6. F Hirota,
  7. T Inoue,
  8. C Nakayama,
  9. M Taiji and
  10. H Noguchi
  1. Sumitomo Pharmaceuticals Research Center, Discovery Research Laboratories II, Osaka, Japan.
    Diabetes 2000 Mar; 49(3): 436-444. https://doi.org/10.2337/diabetes.49.3.436
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    We previously reported that brain-derived neurotrophic factor (BDNF) regulates both food intake and blood glucose metabolism in rodent obese diabetic models such as C57BL/KsJ-lepr(db)/lepr(db) (db/db) mice. To elucidate the effect of BDNF on glucose metabolism, we designed a novel pellet pair-feeding apparatus to eliminate the effect of appetite alteration on glucose metabolism. The apparatus was used to synchronize food intake precisely between BDNF-treated and vehicle-treated db/db mice. It was shown using this pellet pair-feeding apparatus that BDNF administered daily (20 mg x kg(-1) x day(-1)) to db/db mice significantly lowered blood glucose compared with pellet pair-fed db/db mice. To evaluate the effect of BDNF on insulin action, we used streptozotocin-induced type 1 diabetic mice. In this case, BDNF did not lower blood glucose concentration but rather enhanced the hypoglycemic action of insulin. In hyperglycemic db/db mice, pancreatic insulin content was reduced and glucagon content was increased compared with normoglycemic db/m mice. BDNF administered to db/db mice significantly restored both pancreatic insulin and glucagon content. Histological observations of aldehyde-fuchsin staining and immunostaining with anti-insulin indicated that insulin-positive pancreatic beta-cells were extensively regranulated by BDNF administration. We also studied the effect of BDNF on KK mice, normoglycemic animals with impaired glucose tolerance. In these mice, BDNF administration improved insulin resistance in the oral glucose tolerance test. To elucidate how blood glucose was metabolized in BDNF-treated animals, we investigated the effect of BDNF on the energy metabolism of db/db mice. Body temperature and oxygen consumption of the pellet pair-fed vehicle-treated mice were remarkably lower than the ad libitum-fed vehicle-treated mice. Daily BDNF administration for 3 weeks completely ameliorated both of the reductions. Finally, to clarify its action mechanism, the effect of intracerebroventricular administration of BDNF on db/db mice was examined. Here, a small dose of BDNF was found to be effective in lowering blood glucose concentration. This indicates that BDNF regulates glucose metabolism by acting directly on the brain.

    PreviousNext
    Back to top

    In this Issue

    March 2000, 49(3)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice.
    T Nakagawa, A Tsuchida, Y Itakura, T Nonomura, M Ono, F Hirota, T Inoue, C Nakayama, M Taiji, H Noguchi
    Diabetes Mar 2000, 49 (3) 436-444; DOI: 10.2337/diabetes.49.3.436

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice.
    T Nakagawa, A Tsuchida, Y Itakura, T Nonomura, M Ono, F Hirota, T Inoue, C Nakayama, M Taiji, H Noguchi
    Diabetes Mar 2000, 49 (3) 436-444; DOI: 10.2337/diabetes.49.3.436
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.