Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Validation of methods for measurement of insulin secretion in humans in vivo.

  1. L L Kjems,
  2. E Christiansen,
  3. A Vølund,
  4. R N Bergman and
  5. S Madsbad
  1. Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark.
    Diabetes 2000 Apr; 49(4): 580-588. https://doi.org/10.2337/diabetes.49.4.580
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    To detect and understand the changes in beta-cell function in the pathogenesis of type 2 diabetes, an accurate and precise estimation of prehepatic insulin secretion rate (ISR) is essential. There are two common methods to assess ISR, the deconvolution method (by Eaton and Polonsky)-considered the "gold standard"-and the combined model (by Vølund et al.). The deconvolution method is a 2-day method, which generally requires separate assessment of C-peptide kinetics, whereas the combined model is a single-day method that uses insulin and C-peptide data from a single test of interest. The validity of these mathematical techniques for quantification of insulin secretion have been tested in dogs, but not in humans. In the present studies, we examined the validity of both methods to recover the known infusion rates of insulin and C-peptide mimicking ISR during an oral glucose tolerance test. ISR from both the combined model and the deconvolution method were accurate, i.e., recovery of true ISR was not significantly different from 100%. Furthermore, both maximal and total ISRs from the combined model were strongly correlated to those obtained by the deconvolution method (r = 0.89 and r = 0.82, respectively). These results indicate that both approaches provide accurate assessment of prehepatic ISRs in type 2 diabetic patients and control subjects. A simplified version of the deconvolution method based on standard kinetic parameters for C-peptide (Van Cauter et al.) was compared with the 2-day deconvolution method, and a close agreement was found for the results of an oral glucose tolerance test. We also studied whether C-peptide kinetics are influenced by somatostatin infusion. The decay curves after bolus injection of exogenous biosynthetic human C-peptide, the kinetic parameters, and the metabolic clearance rate were similar whether measured during constant peripheral somatostatin infusion or without somatostatin infusion. Assessment of C-peptide kinetics can be performed without infusion of somatostatin, because the endogenous insulin concentration remains constant. Assessment of C-peptide kinetics with and without infusion of somatostatin results in nearly identical secretion rates for insulin during an oral glucose tolerance test.

    PreviousNext
    Back to top

    In this Issue

    April 2000, 49(4)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Validation of methods for measurement of insulin secretion in humans in vivo.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Validation of methods for measurement of insulin secretion in humans in vivo.
    L L Kjems, E Christiansen, A Vølund, R N Bergman, S Madsbad
    Diabetes Apr 2000, 49 (4) 580-588; DOI: 10.2337/diabetes.49.4.580

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Validation of methods for measurement of insulin secretion in humans in vivo.
    L L Kjems, E Christiansen, A Vølund, R N Bergman, S Madsbad
    Diabetes Apr 2000, 49 (4) 580-588; DOI: 10.2337/diabetes.49.4.580
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.