Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity.

  1. S I Itani,
  2. Q Zhou,
  3. W J Pories,
  4. K G MacDonald and
  5. G L Dohm
  1. Department of Biochemistry, School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA.
    Diabetes 2000 Aug; 49(8): 1353-1358. https://doi.org/10.2337/diabetes.49.8.1353
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    This study was conducted to investigate the possible involvement of protein kinase C (PKC) and serine/threonine phosphorylation of the insulin receptor in insulin resistance and/or obesity. Insulin receptor tyrosine kinase activity was depressed in muscle from obese insulin-resistant patients compared with lean insulin-responsive control subjects. Alkaline phosphatase treatment resulted in a significant 48% increase in in vitro insulin-stimulated receptor tyrosine kinase activity in obese but not lean muscle. To investigate the involvement of PKC in skeletal muscle insulin resistance and/or obesity, membrane-associated PKC activity and the protein content of various PKC isoforms were measured in human skeletal muscle from lean, insulin-responsive, and obese insulin-resistant patients. Membrane-associated PKC activity was not changed; however, PKC-beta protein content, assayed by Western blot analysis, was significantly higher, whereas PKC-theta, -eta, and -mu were significantly lower in muscle from obese patients compared with muscle from lean control subjects. Incubation of muscle strips with insulin significantly increased membrane-associated PKC activity in muscle from obese but not lean subjects. PKC-delta, -beta, and -theta were translocated from the cytosol to the membrane fraction in response to insulin treatment. These results suggest that in skeletal muscle from insulin-resistant obese patients, insulin receptor tyrosine kinase activity was reduced because of hyperphosphorylation on serine/threonine residues. Membrane-associated PKC-beta protein was elevated under basal conditions, and membrane-associated total PKC activity was increased under insulin-stimulated conditions in muscle from obese insulin-resistant patients. Thus, we postulate that the decreased tyrosine kinase activity of the insulin receptor may be caused by serine/threonine phosphorylation by PKC.

    PreviousNext
    Back to top

    In this Issue

    August 2000, 49(8)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity.
    S I Itani, Q Zhou, W J Pories, K G MacDonald, G L Dohm
    Diabetes Aug 2000, 49 (8) 1353-1358; DOI: 10.2337/diabetes.49.8.1353

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity.
    S I Itani, Q Zhou, W J Pories, K G MacDonald, G L Dohm
    Diabetes Aug 2000, 49 (8) 1353-1358; DOI: 10.2337/diabetes.49.8.1353
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.