Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Pathophysiology

Isomer-Specific Antidiabetic Properties of Conjugated Linoleic Acid

Improved Glucose Tolerance, Skeletal Muscle Insulin Action, and UCP-2 Gene Expression

  1. J.W. Ryder1,
  2. C.P. Portocarrero2,
  3. X.M. Song1,
  4. L. Cui3,
  5. M. Yu1,
  6. T. Combatsiaris3,
  7. D. Galuska1,
  8. D.E. Bauman4,
  9. D.M. Barbano5,
  10. M.J. Charron3,
  11. J.R. Zierath1 and
  12. K.L. Houseknecht2
  1. 1Department of Clinical Physiology, Karolinska Institute, Stockholm Sweden
  2. 2Department of Animal Sciences, Purdue University, West Lafayette, Indiana
  3. 3Department of Biochemistry, Yeshiva University, Bronx; and the Departments of
  4. 4Animal Science and
  5. 5Food Science, Cornell University, Ithaca, New York
    Diabetes 2001 May; 50(5): 1149-1157. https://doi.org/10.2337/diabetes.50.5.1149
    PreviousNext
    • Article
    • Figures & Tables
    • Info & Metrics
    • PDF
    Loading

    Improved Glucose Tolerance, Skeletal Muscle Insulin Action, and UCP-2 Gene Expression

    Abstract

    Conjugated linoleic acid (CLA) isomers have a number of beneficial health effects, as shown in biomedical studies with animal models. Previously, we reported that a mixture of CLA isomers improved glucose tolerance in ZDF rats and activated peroxisome proliferator–activated receptor (PPAR)-γ response elements in vitro. Here, our aim was to elucidate the effect(s) of specific CLA isomers on whole-body glucose tolerance, insulin action in skeletal muscle, and expression of genes important in glucose and lipid metabolism. ZDF rats were fed either a control diet (CON), one of two CLA supplemented diets (1.5% CLA) containing differing isoforms of CLA (47% c9,t11; 47.9% c10,t12, 50:50; or 91% c9,t11, c9,t11 isomers), or were pair-fed CON diet to match the intake of 50:50. The 50:50 diet reduced adiposity and improved glucose tolerance compared with all other ZDF treatments. Insulin-stimulated glucose transport and glycogen synthase activity in skeletal muscle were improved with 50:50 compared with all other treatments. Neither phosphatidlyinositol 3-kinase activity nor Akt activity in muscle was affected by treatment. Uncoupling protein 2 in muscle and adipose tissue was upregulated by c9,t11 and 50:50 compared with ZDF controls. PPAR-γ mRNA was downregulated in liver of c9,t11 and pair-fed ZDF rats. Thus, the improved glucose tolerance in 50:50 rats is attributable to, at least in part, improved insulin action in muscle, and CLA effects cannot be explained simply by reduced food intake.

    Footnotes

    • Address correspondence and reprint requests to Karen L. Houseknecht, Discovery Pharmaceuticals, Pfizer Global Research and Development-Groton Laboratories, MS 8220-2239, Eastern Point Rd., Groton, CT 06340-8002. E-mail: karen_l_houseknecht{at}groton.pfizer.com.

      Received for publication 27 September 2000 and accepted in revised form 9 February 2001.

      J.W.R. and C.P.P contributed equally to this work.

      K.L.H. is employed by Pfizer Inc. (Groton, CT), which manufactures and markets pharmaceuticals related to the treatment of diabetes and its complications.

      BAT, brown adipose tissue; CLA, conjugated linoleic acid; CON, control diet; ECL, enhanced chemiluminescence; EDL, extensor digitorum longus; G-6-P, glucose-6-phosphate; KHB, Krebs-Henseleit buffer; NEFA, nonesterified fatty acid; PI, phosphatidylinositol; PPAR, peroxisome proliferator–activated receptor; RT-PCR, reverse transcriptase–polymerase chain reaction; SSC, sodium chloride–sodium citrate; TBST, Tris-buffered saline plus Tween; TG, triglyceride; TZD, thiazolidinedione; UCP, uncoupling protein.

    View Full Text
    PreviousNext
    Back to top

    In this Issue

    May 2001, 50(5)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Isomer-Specific Antidiabetic Properties of Conjugated Linoleic Acid
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Isomer-Specific Antidiabetic Properties of Conjugated Linoleic Acid
    J.W. Ryder, C.P. Portocarrero, X.M. Song, L. Cui, M. Yu, T. Combatsiaris, D. Galuska, D.E. Bauman, D.M. Barbano, M.J. Charron, J.R. Zierath, K.L. Houseknecht
    Diabetes May 2001, 50 (5) 1149-1157; DOI: 10.2337/diabetes.50.5.1149

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Isomer-Specific Antidiabetic Properties of Conjugated Linoleic Acid
    J.W. Ryder, C.P. Portocarrero, X.M. Song, L. Cui, M. Yu, T. Combatsiaris, D. Galuska, D.E. Bauman, D.M. Barbano, M.J. Charron, J.R. Zierath, K.L. Houseknecht
    Diabetes May 2001, 50 (5) 1149-1157; DOI: 10.2337/diabetes.50.5.1149
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • RESEARCH DESIGN AND METHODS
      • RESULTS
      • DISCUSSION
      • Acknowledgments
      • Footnotes
      • REFERENCES
    • Figures & Tables
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • CEPT1-Mediated Phospholipogenesis Regulates Endothelial Cell Function and Ischemia-Induced Angiogenesis Through PPARα
    • Podocyte EGFR Inhibits Autophagy Through Upregulation of Rubicon in Type 2 Diabetic Nephropathy
    • A High-Fat Diet Attenuates AMPK α1 in Adipocytes to Induce Exosome Shedding and Nonalcoholic Fatty Liver Development In Vivo
    Show more Pathophysiology

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.