Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Pathophysiology

IGF-1 Overexpression Inhibits the Development of Diabetic Cardiomyopathy and Angiotensin II–Mediated Oxidative Stress

  1. Jan Kajstura1,
  2. Fabio Fiordaliso1,3,
  3. Anna Maria Andreoli1,
  4. Baosheng Li1,
  5. Stefano Chimenti1,
  6. Marvin S. Medow2,
  7. Federica Limana1,
  8. Bernardo Nadal-Ginard1,
  9. Annarosa Leri1 and
  10. Piero Anversa1
  1. 1Medicine and
  2. 2Pediatrics, New York Medical College, Valhalla, New York
  3. 3Istituto Di Ricerche Farmacologiche Mario Negri, Milan, Italy
Diabetes 2001 Jun; 50(6): 1414-1424. https://doi.org/10.2337/diabetes.50.6.1414
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading

Abstract

Stimulation of the local renin-angiotensin system and apoptosis characterize the diabetic heart. Because IGF-1 reduces angiotensin (Ang) II and apoptosis, we tested whether streptozotocin-induced diabetic cardiomyopathy was attenuated in IGF-1 transgenic mice (TGM). Diabetes progressively depressed ventricular performance in wild-type mice (WTM) but had no hemodynamic effect on TGM. Myocyte apoptosis measured at 7 and 30 days after the onset of diabetes was twofold higher in WTM than in TGM. Myocyte necrosis was apparent only at 30 days and was more severe in WTM. Diabetic nontransgenic mice lost 24% of their ventricular myocytes and showed a 28% myocyte hypertrophy; both phenomena were prevented by IGF-1. In diabetic WTM, p53 was increased in myocytes, and this activation of p53 was characterized by upregulation of Bax, angiotensinogen, Ang type 1 (AT1) receptors, and Ang II. IGF-1 overexpression decreased these biochemical responses. In vivo accumulation of the reactive O2 product nitrotyrosine and the in vitro formation of H2O2-˙OH in myocytes were higher in diabetic WTM than TGM. Apoptosis in vitro was detected in myocytes exhibiting high H2O2-˙OH fluorescence, and apoptosis in vivo was linked to the presence of nitrotyrosine. H2O2-˙OH generation and myocyte apoptosis in vitro were inhibited by the AT1 blocker losartan and the O2 scavenger Tiron. In conclusion, IGF-1 interferes with the development of diabetic myopathy by attenuating p53 function and Ang II production and thus AT1 activation. This latter event might be responsible for the decrease in oxidative stress and myocyte death by IGF-1.

View Full Text
PreviousNext
Back to top

In this Issue

June 2001, 50(6)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
IGF-1 Overexpression Inhibits the Development of Diabetic Cardiomyopathy and Angiotensin II–Mediated Oxidative Stress
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
IGF-1 Overexpression Inhibits the Development of Diabetic Cardiomyopathy and Angiotensin II–Mediated Oxidative Stress
Jan Kajstura, Fabio Fiordaliso, Anna Maria Andreoli, Baosheng Li, Stefano Chimenti, Marvin S. Medow, Federica Limana, Bernardo Nadal-Ginard, Annarosa Leri, Piero Anversa
Diabetes Jun 2001, 50 (6) 1414-1424; DOI: 10.2337/diabetes.50.6.1414

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

IGF-1 Overexpression Inhibits the Development of Diabetic Cardiomyopathy and Angiotensin II–Mediated Oxidative Stress
Jan Kajstura, Fabio Fiordaliso, Anna Maria Andreoli, Baosheng Li, Stefano Chimenti, Marvin S. Medow, Federica Limana, Bernardo Nadal-Ginard, Annarosa Leri, Piero Anversa
Diabetes Jun 2001, 50 (6) 1414-1424; DOI: 10.2337/diabetes.50.6.1414
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Podocyte EGFR Inhibits Autophagy Through Upregulation of Rubicon in Type 2 Diabetic Nephropathy
  • A High-Fat Diet Attenuates AMPK α1 in Adipocytes to Induce Exosome Shedding and Nonalcoholic Fatty Liver Development In Vivo
  • Multinucleated Giant Cells in Adipose Tissue Are Specialized in Adipocyte Degradation
Show more Pathophysiology

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.