Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Rapid Publication

Proteins Linked to a Protein Transduction Domain Efficiently Transduce Pancreatic Islets

  1. Jennifer Embury,
  2. Dagmar Klein,
  3. Antonello Pileggi,
  4. Melina Ribeiro,
  5. Sundararajan Jayaraman,
  6. R. Damaris Molano,
  7. Christopher Fraker,
  8. Norma Kenyon,
  9. Camillo Ricordi,
  10. Luca Inverardi and
  11. Ricardo L. Pastori
  1. Diabetes Research Institute, University of Miami School of Medicine, Miami, Florida
    Diabetes 2001 Aug; 50(8): 1706-1713. https://doi.org/10.2337/diabetes.50.8.1706
    PreviousNext
    • Article
    • Figures & Tables
    • Info & Metrics
    • PDF
    Loading

    Abstract

    The resounding success of a new immunosuppressive regimen known as the Edmonton protocol demonstrates that islet cell transplantation is becoming a therapeutic reality for diabetes. However, under the Edmonton protocol, a single donor does not provide enough islets to attain the insulin independence of a transplant recipient. This limitation is mainly caused by islet apoptosis triggered during isolation. In this study, we describe a highly efficient system of transiently transferring anti-apoptotic proteins into pancreatic islets, thus opening an exciting new therapeutic opportunity to improve the viability of transplantable islets. We fused β-galactosidase to the 11–amino acid residues that constitute the protein transduction domain (PTD) of the HIV/TAT protein and transduced pancreatic islets ex vivo with this fusion protein in a dose-dependent manner with >80% efficiency. We observed that transduction of the anti-apoptotic proteins Bcl-XL and PEA-15 fused to TAT/PTD prevented apoptosis induced by tumor necrosis factor-α in a pancreatic β-cell line, indicating that TAT/PTD anti-apoptotic proteins retained their biological activity. Finally, we demonstrated that TAT-fusion proteins did not affect the insulin secretion capability of islets, as determined by glucose static incubation and by reversion of hyperglycemia in diabetic immunodeficient mice.

    Footnotes

    • Address correspondence and reprint requests to R.L. Pastori, Diabetes Research Institute, University of Miami School of Medicine, 1450 NW 10th Ave., Miami, FL 33136. E-mail: rpastori{at}med.miami.edu.

      Received for publication 22 December 2000 and accepted in revised form 15 May 2001. Posted on the World Wide Web at www.diabetes.org/diabetes on 21 June 2001.

      AFC, 7-amino-4-trifluoromethyl coumarin; CHX, cycloheximide; DED, death effector domain; DEVD, Asp-Glu-Val-Asp; DMEM, Dulbecco’s modified Eagle’s medium; ECM, extracellular matrix; FBS, fetal bovine serum; FITC, fluorescein isothyiocyanate; FMK, fluoromethyl ketone; IEQ, islet equivalent; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; PMSF, phenylmethylsulfonyl fluoride; PTD, protein transduction domain; SI, stimulation index; TNF-α, tumor necrosis factor-α; VAD, Val-Ala-Asp.

    View Full Text
    PreviousNext
    Back to top

    In this Issue

    August 2001, 50(8)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Proteins Linked to a Protein Transduction Domain Efficiently Transduce Pancreatic Islets
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Proteins Linked to a Protein Transduction Domain Efficiently Transduce Pancreatic Islets
    Jennifer Embury, Dagmar Klein, Antonello Pileggi, Melina Ribeiro, Sundararajan Jayaraman, R. Damaris Molano, Christopher Fraker, Norma Kenyon, Camillo Ricordi, Luca Inverardi, Ricardo L. Pastori
    Diabetes Aug 2001, 50 (8) 1706-1713; DOI: 10.2337/diabetes.50.8.1706

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Proteins Linked to a Protein Transduction Domain Efficiently Transduce Pancreatic Islets
    Jennifer Embury, Dagmar Klein, Antonello Pileggi, Melina Ribeiro, Sundararajan Jayaraman, R. Damaris Molano, Christopher Fraker, Norma Kenyon, Camillo Ricordi, Luca Inverardi, Ricardo L. Pastori
    Diabetes Aug 2001, 50 (8) 1706-1713; DOI: 10.2337/diabetes.50.8.1706
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • RESEARCH DESIGN AND METHODS
      • RESULTS
      • DISCUSSION
      • Acknowledgments
      • Footnotes
      • REFERENCES
    • Figures & Tables
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • Regeneration of Pancreatic Islets After Partial Pancreatectomy in Mice Does Not Involve the Reactivation of Neurogenin-3
    • Abnormal Glucose Homeostasis due to Chronic Hyperresistinemia
    • Human Pancreatic Duct Cells Exert Tissue Factor-Dependent Procoagulant Activity
    Show more Rapid Publication

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.