Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Islet Studies

Decrease in β-Cell Mass Leads to Impaired Pulsatile Insulin Secretion, Reduced Postprandial Hepatic Insulin Clearance, and Relative Hyperglucagonemia in the Minipig

  1. Lise L. Kjems1,
  2. Barbara M. Kirby1,
  3. Elizabeth M. Welsh1,
  4. Johannes D. Veldhuis2,
  5. Marty Straume2,
  6. Susan S. McIntyre1,
  7. Dongchang Yang1,
  8. Pierre Lefèbvre3 and
  9. Peter C. Butler1
  1. 1Diabetes Research Unit and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland
  2. 2Center for Biological Timing and Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
  3. 3Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University of Liege, Liege, Belgium
    Diabetes 2001 Sep; 50(9): 2001-2012. https://doi.org/10.2337/diabetes.50.9.2001
    PreviousNext
    • Article
    • Figures & Tables
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Most insulin is secreted in discrete pulses at an interval of ∼6 min. Increased insulin secretion after meal ingestion is achieved through the mechanism of amplification of the burst mass. Conversely, in type 2 diabetes, insulin secretion is impaired as a consequence of decreased insulin pulse mass. β-cell mass is reported to be deficient in type 2 diabetes. We tested the hypothesis that decreased β-cell mass leads to decreased insulin pulse mass. Insulin secretion was examined before and after an ∼60% decrease in β-cell mass achieved by a single injection of alloxan in a porcine model. Alloxan injection resulted in stable diabetes (fasting plasma glucose 7.4 ± 1.1 vs. 4.4 ± 0.1 mmol/l; P < 0.01) with impaired insulin secretion in the fasting and fed states and during a hyperglycemic clamp (decreased by 54, 80, and 90%, respectively). Deconvolution analysis revealed a selective decrease in insulin pulse mass (by 54, 60, and 90%) with no change in pulse frequency. Rhythm analysis revealed no change in the periodicity of regular oscillations after alloxan administration in the fasting state but was unable to detect stable rhythms reliably after enteric or intravenous glucose stimulation. After alloxan administration, insulin secretion and insulin pulse mass (but not insulin pulse interval) decreased in relation to β-cell mass. However, the decreased pulse mass (and pulse amplitude delivered to the liver) was associated with a decrease in hepatic insulin clearance, which partially offset the decreased insulin secretion. Despite hyperglycemia, postprandial glucagon concentrations were increased after alloxan administration (103.4 ± 6.3 vs. 92.2 ± 2.5 pg/ml; P < 0.01). We conclude that an alloxan-induced selective decrease in β-cell mass leads to deficient insulin secretion by attenuating insulin pulse mass, and that the latter is associated with decreased hepatic insulin clearance and relative hyperglucagonemia, thereby emulating the pattern of islet dysfunction observed in type 2 diabetes.

    Footnotes

    • Address correspondence and reprint requests to Dr. Peter C. Butler, Division of Endocrinology and Diabetes, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT-B11, Los Angeles, CA 90033. E-mail: pbutler{at}hsc.usc.edu.

      Received for publication 15 September 2000 and accepted in revised form 16 May 2001.

      P.C.B. received an unrestricted grant from Novo Nordisk to assist in the development of the porcine model used in this study.

      ELISA, enzyme-linked immunosorbent assay.

    View Full Text
    PreviousNext
    Back to top

    In this Issue

    September 2001, 50(9)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Decrease in β-Cell Mass Leads to Impaired Pulsatile Insulin Secretion, Reduced Postprandial Hepatic Insulin Clearance, and Relative Hyperglucagonemia in the Minipig
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Decrease in β-Cell Mass Leads to Impaired Pulsatile Insulin Secretion, Reduced Postprandial Hepatic Insulin Clearance, and Relative Hyperglucagonemia in the Minipig
    Lise L. Kjems, Barbara M. Kirby, Elizabeth M. Welsh, Johannes D. Veldhuis, Marty Straume, Susan S. McIntyre, Dongchang Yang, Pierre Lefèbvre, Peter C. Butler
    Diabetes Sep 2001, 50 (9) 2001-2012; DOI: 10.2337/diabetes.50.9.2001

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Decrease in β-Cell Mass Leads to Impaired Pulsatile Insulin Secretion, Reduced Postprandial Hepatic Insulin Clearance, and Relative Hyperglucagonemia in the Minipig
    Lise L. Kjems, Barbara M. Kirby, Elizabeth M. Welsh, Johannes D. Veldhuis, Marty Straume, Susan S. McIntyre, Dongchang Yang, Pierre Lefèbvre, Peter C. Butler
    Diabetes Sep 2001, 50 (9) 2001-2012; DOI: 10.2337/diabetes.50.9.2001
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • RESEARCH DESIGN AND METHODS
      • RESULTS
      • DISCUSSION
      • Acknowledgments
      • Footnotes
      • REFERENCES
    • Figures & Tables
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia
    • Acyl-Ghrelin Influences Pancreatic β-Cell Function by Interference with KATP Channels
    • Pancreatic β-Cell–Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion
    Show more Islet Studies

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.