Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Metabolism and Signal Transduction

Activating Transcription Factor-2 Mediates Transcriptional Regulation of Gluconeogenic Gene PEPCK by Retinoic Acid

  1. Min Young Lee1,
  2. Che-Hun Jung2,
  3. Keesook Lee1,
  4. Yung Hyun Choi3,
  5. SunHwa Hong4 and
  6. JaeHun Cheong4
  1. 1Hormone Research Center, Chonnam National University, Kwangju, Korea
  2. 2Department of Chemistry, Chonnam National University, Kwangju, Korea
  3. 3Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, Korea
  4. 4Department of Molecular Biology, Pusan National University, Busan, Korea
    Diabetes 2002 Dec; 51(12): 3400-3407. https://doi.org/10.2337/diabetes.51.12.3400
    PreviousNext
    • Article
    • Figures & Tables
    • Info & Metrics
    • PDF
    Loading

    Abstract

    All-trans-retinoic acid (RA) is known to increase the rate of transcription of the PEPCK gene upon engagement of the RA receptor (RAR). RA also mediates induction of specific gene transcription via several signaling pathways as a nongenomic effect. Here we show that RA upregulation of PEPCK promoter activity requires the cAMP response element (CRE)-1 in addition to the RA-response element and that activating transcription factor-2 (ATF-2) binds the CRE element to mediate this effect. Furthermore, we show that RA treatment potentiates ATF-2-dependent transactivation by inducing specific phosphorylation of ATF-2 by p38β kinase. ATF-2 activation by RA blocked the inhibitory intramolecular interaction of ATF-2 amino and carboxyl terminal domains in a p38β kinase-dependent manner. Consistent with these results, RA treatment increased the DNA binding activity of ATF-2 on the PEPCK CRE-1 sequence. Taken together, the data suggest that RA activates the p38β kinase pathway leading to phosphorylation and activation of ATF-2, thereby enhancing PEPCK gene transcription and glucose production.

    Footnotes

    • Address correspondence and reprint requests to JaeHun Cheong, Department of Molecular Biology, Pusan National University, Pusan 609-735, Korea. E-mail: molecule85{at}pusan.ac.kr.

      Received for publication 12 June 2002 and accepted in revised form 7 August 2002.

      ATF, activating transcription factor; bZIP, basic-leucine zipper; C/EBP, CCAAT/enhancer-binding protein; CRE, cAMP response element; CREB, cAMP response element-binding protein; ERK, extracellular signal-regulated kinase; GR, glucocorticoid receptor; HNF, hepatocyte nuclear factor; JNK, c-Jun NH2-terminal kinase; MAP, mitogen-activated protein; NF-1, nuclear factor-1; RA, all-trans-retinoic acid; RAR, RA receptor; RARE, RA-response element; RXR, retinoid X receptor; TR, thyroid hormone receptor.

    • DIABETES
    View Full Text
    PreviousNext
    Back to top

    In this Issue

    December 2002, 51(12)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Activating Transcription Factor-2 Mediates Transcriptional Regulation of Gluconeogenic Gene PEPCK by Retinoic Acid
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Activating Transcription Factor-2 Mediates Transcriptional Regulation of Gluconeogenic Gene PEPCK by Retinoic Acid
    Min Young Lee, Che-Hun Jung, Keesook Lee, Yung Hyun Choi, SunHwa Hong, JaeHun Cheong
    Diabetes Dec 2002, 51 (12) 3400-3407; DOI: 10.2337/diabetes.51.12.3400

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Activating Transcription Factor-2 Mediates Transcriptional Regulation of Gluconeogenic Gene PEPCK by Retinoic Acid
    Min Young Lee, Che-Hun Jung, Keesook Lee, Yung Hyun Choi, SunHwa Hong, JaeHun Cheong
    Diabetes Dec 2002, 51 (12) 3400-3407; DOI: 10.2337/diabetes.51.12.3400
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • RESEARCH DESIGN AND METHODS
      • RESULTS
      • DISCUSSION
      • Acknowledgments
      • Footnotes
      • REFERENCES
    • Figures & Tables
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • Insulin Resistance and Lipodystrophy in Mice Lacking Ribosomal S6 Kinase 2
    • Combined Infusion of Epinephrine and Norepinephrine During Moderate Exercise Reproduces the Glucoregulatory Response of Intense Exercise
    • Involvement of AMP-Activated Protein Kinase in Glucose Uptake Stimulated by the Globular Domain of Adiponectin in Primary Rat Adipocytes
    Show more Metabolism and Signal Transduction

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.