Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Pathophysiology

Inclusion of Low Amounts of Fructose With an Intraduodenal Glucose Load Markedly Reduces Postprandial Hyperglycemia and Hyperinsulinemia in the Conscious Dog

  1. Masakazu Shiota1,
  2. Mary Courtney Moore1,
  3. Pietro Galassetti1,
  4. Michael Monohan1,
  5. Doss W. Neal1,
  6. Gerald I. Shulman2 and
  7. Alan D. Cherrington1
  1. 1Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
  2. 2Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
    Diabetes 2002 Feb; 51(2): 469-478. https://doi.org/10.2337/diabetes.51.2.469
    PreviousNext
    • Article
    • Figures & Tables
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Intraportal infusion of small amounts of fructose markedly augmented net hepatic glucose uptake (NHGU) during hyperglycemic hyperinsulinemia in conscious dogs. In this study, we examined whether the inclusion of catalytic amounts of fructose with a glucose load reduces postprandial hyperglycemia and the pancreatic β-cell response to a glucose load in conscious 42-h-fasted dogs. Each study consisted of an equilibration (−140 to −40 min), control (−40 to 0 min), and test period (0–240 min). During the latter period, glucose (44.4 μmol · kg−1 · min−1) was continuously given intraduodenally with (2.22 μmol · kg−1 · min−1) or without fructose. The glucose appearance rate in portal vein blood was not significantly different with or without the inclusion of fructose (41.3 ± 2.7 vs. 37.3 ± 8.3 μmol · kg−1 · min−1, respectively). In response to glucose infusion without the inclusion of fructose, the net hepatic glucose balance switched from output to uptake (from 10 ± 2 to 11 ± 4 μmol · kg−1 · min−1) by 30 min and averaged 17 ± 6 μmol · kg−1 · min−1. The fractional extraction of glucose by the liver during the infusion period was 7 ± 2%. Net glycogen deposition was 2.44 mmol glucose equivalent/kg body wt; 49% of deposited glycogen was synthesized via the direct pathway. Net hepatic lactate production was 1.4 mmol/kg body wt. Arterial blood glucose rose from 4.1 ± 0.2 to 7.3 ± 0.4 mmol/l, and arterial plasma insulin rose from 42 ± 6 to 258 ± 66 pmol/l at 30 min, after which they decreased to 7.0 ± 0.5 mmol/l and 198 ± 66 pmol/l, respectively. Arterial plasma glucagon decreased from 54 ± 7 to 32 ± 3 ng/l. In response to intraduodenal glucose infusion in the presence of fructose, net hepatic glucose balance switched from 9 ± 1 μmol · kg−1 · min−1 output to 12 ± 3 and 28 ± 5 μmol · kg−1 · min−1 uptake by 15 and 30 min, respectively. The average NHGU (28 ± 5 μmol · kg−1 · min−1) and fractional extraction during infusion period (12 ± 2%), net glycogen deposition (3.68 mmol glucose equivalent/kg body wt), net hepatic lactate production (3.27 mmol/kg), and glycogen synthesis via the direct pathway (68%) were significantly higher (P < 0.05) compared to that in the absence of fructose. The increases in arterial blood glucose (from 4.4 ± 0.1 to 6.4 ± 0.2 mmol/l at 30 min) and arterial plasma insulin (from 48 ± 6 to 126 ± 30 pmol/l at 30 min) were significantly smaller (P < 0.05). In summary, the inclusion of small amounts of fructose with a glucose load augmented NHGU, increased hepatic glycogen synthesis via the direct pathway, and augmented hepatic glycolysis. As a result, postprandial hyperglycemia and insulin release by the pancreatic β-cell were reduced. In conclusion, catalytic amounts of fructose have the ability to improve glucose tolerance.

    Footnotes

    • Address correspondence and reprint requests to Masakazu Shiota, DVM, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 710 Medical Research Building I, Nashville, TN 37232-0615. E-mail: masakazu.shiota{at}mcmail.vanderbilt.edu.

      Received for publication 21 September 2001 and accepted in revised form 1 November 2001.

      A.D.C. is on the Medical Advisory Board for Entelos, for which he receives a consulting fee and stock options.

      APE, atom percent excess; CV, coefficient of variation; F1P, fructose-1-phosphate; F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; NHGU, net hepatic glucose uptake; UDP, uridine 5′-diphosphate.

    View Full Text
    PreviousNext
    Back to top

    In this Issue

    February 2002, 51(2)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Inclusion of Low Amounts of Fructose With an Intraduodenal Glucose Load Markedly Reduces Postprandial Hyperglycemia and Hyperinsulinemia in the Conscious Dog
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Inclusion of Low Amounts of Fructose With an Intraduodenal Glucose Load Markedly Reduces Postprandial Hyperglycemia and Hyperinsulinemia in the Conscious Dog
    Masakazu Shiota, Mary Courtney Moore, Pietro Galassetti, Michael Monohan, Doss W. Neal, Gerald I. Shulman, Alan D. Cherrington
    Diabetes Feb 2002, 51 (2) 469-478; DOI: 10.2337/diabetes.51.2.469

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Inclusion of Low Amounts of Fructose With an Intraduodenal Glucose Load Markedly Reduces Postprandial Hyperglycemia and Hyperinsulinemia in the Conscious Dog
    Masakazu Shiota, Mary Courtney Moore, Pietro Galassetti, Michael Monohan, Doss W. Neal, Gerald I. Shulman, Alan D. Cherrington
    Diabetes Feb 2002, 51 (2) 469-478; DOI: 10.2337/diabetes.51.2.469
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • RESEARCH DESIGN AND METHODS
      • RESULTS
      • DISCUSSION
      • Acknowledgments
      • Footnotes
      • REFERENCES
    • Figures & Tables
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • Impaired Activated/Memory Regulatory T Cell Clonal Expansion Instigates Diabetes in NOD Mice
    • Longitudinal Assessment of 11C-5-Hydroxytryptophan Uptake in Pancreas After Debut of Type 1 Diabetes
    • Podocyte EGFR Inhibits Autophagy Through Upregulation of Rubicon in Type 2 Diabetic Nephropathy
    Show more Pathophysiology

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.