Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Pathophysiology

The Effects of Rosiglitazone on Insulin Sensitivity, Lipolysis, and Hepatic and Skeletal Muscle Triglyceride Content in Patients With Type 2 Diabetes

  1. Adam B. Mayerson1,
  2. Ripudaman S. Hundal1,
  3. Sylvie Dufour13,
  4. Vincent Lebon13,
  5. Douglas Befroy13,
  6. Gary W. Cline1,
  7. Staffan Enocksson1,
  8. Silvio E. Inzucchi1,
  9. Gerald I. Shulman123 and
  10. Kitt F. Petersen1
  1. 1Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
  2. 2Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
  3. 3Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
    Diabetes 2002 Mar; 51(3): 797-802. https://doi.org/10.2337/diabetes.51.3.797
    PreviousNext
    • Article
    • Figures & Tables
    • Info & Metrics
    • PDF
    Loading

    Abstract

    We examined the effect of three months of rosiglitazone treatment (4 mg b.i.d.) on whole-body insulin sensitivity and in vivo peripheral adipocyte insulin sensitivity as assessed by glycerol release in microdialysis from subcutaneous fat during a two-step (20 and 120 mU · m−2 · min−1) hyperinsulinemic-euglycemic clamp in nine type 2 diabetic subjects. In addition, the effects of rosiglitazone on liver and muscle triglyceride content were assessed by 1H-nuclear magnetic resonance spectroscopy. Rosiglitazone treatment resulted in a 68% (P < 0.002) and a 20% (P < 0.016) improvement in insulin-stimulated glucose metabolism during the low- and high- dosage−insulin clamps, respectively, which was associated with ∼40% reductions in plasma fatty acid concentration (P < 0.05) and hepatic triglyceride content (P < 0.05). These changes were associated with a 39% increase in extramyocellular lipid content (P < 0.05) and a 52% increase in the sensitivity of peripheral adipocytes to the inhibitory effects of insulin on lipolysis (P = 0.04). In conclusion, these results support the hypothesis that thiazolidinediones enhance insulin sensitivity in patients with type 2 diabetes by promoting increased insulin sensitivity in peripheral adipocytes, which results in lower plasma fatty acid concentrations and a redistribution of intracellular lipid from insulin responsive organs into peripheral adipocytes.

    Footnotes

    • Address correspondence and reprint requests to Kitt F. Petersen, M.D., Department of Internal Medicine, Yale University School of Medicine, 333 Cedar St., Fitkin 1, Box 208020, New Haven, CT 06520-8020. E-mail: kitt.petersen{at}yale.edu.

      Received for publication 3 October 2001 and accepted in revised form 31 October 2001.

      S.E.I. has received honoraria and is on the speakers’ bureau for both Glaxco/SmithKline and Takeda Pharmaceuticals America and has also received research support from Takeda. G.I.S. has served as a research consultant for Glaxo/SmithKline Beecham.

      DEXA, dual-energy X-ray absorptiometry; EMLC, extramyocellular lipid content; GDR, glucose disposal rate; ETOH, ethanol; ETOHin, ethanol concentration measured in the perfusate; ETOHout, ethanol concentration in the dialysate; GCMS, gas chromatography−mass spectrometry; GIR, glucose infusion rate; GP, endogenous glucose production; IMLC, intramyocellular lipid content; NMR, nuclear magnetic resonance; PPAR-γ, peroxisome proliferator−activated receptor-γ; TNF-α, tumor necrosis factor-α; TZD, thiazolidinedione.

    • DIABETES
    View Full Text
    PreviousNext
    Back to top

    In this Issue

    March 2002, 51(3)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    The Effects of Rosiglitazone on Insulin Sensitivity, Lipolysis, and Hepatic and Skeletal Muscle Triglyceride Content in Patients With Type 2 Diabetes
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    The Effects of Rosiglitazone on Insulin Sensitivity, Lipolysis, and Hepatic and Skeletal Muscle Triglyceride Content in Patients With Type 2 Diabetes
    Adam B. Mayerson, Ripudaman S. Hundal, Sylvie Dufour, Vincent Lebon, Douglas Befroy, Gary W. Cline, Staffan Enocksson, Silvio E. Inzucchi, Gerald I. Shulman, Kitt F. Petersen
    Diabetes Mar 2002, 51 (3) 797-802; DOI: 10.2337/diabetes.51.3.797

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    The Effects of Rosiglitazone on Insulin Sensitivity, Lipolysis, and Hepatic and Skeletal Muscle Triglyceride Content in Patients With Type 2 Diabetes
    Adam B. Mayerson, Ripudaman S. Hundal, Sylvie Dufour, Vincent Lebon, Douglas Befroy, Gary W. Cline, Staffan Enocksson, Silvio E. Inzucchi, Gerald I. Shulman, Kitt F. Petersen
    Diabetes Mar 2002, 51 (3) 797-802; DOI: 10.2337/diabetes.51.3.797
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • RESEARCH DESIGN AND METHODS
      • RESULTS
      • DISCUSSION
      • Acknowledgments
      • Footnotes
      • REFERENCES
    • Figures & Tables
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • A High-Fat Diet Attenuates AMPK α1 in Adipocytes to Induce Exosome Shedding and Nonalcoholic Fatty Liver Development In Vivo
    • Multinucleated Giant Cells in Adipose Tissue Are Specialized in Adipocyte Degradation
    • CEPT1-Mediated Phospholipogenesis Regulates Endothelial Cell Function and Ischemia-Induced Angiogenesis Through PPARα
    Show more Pathophysiology

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.