Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Complications

Morphometry of Dorsal Root Ganglion in Chronic Experimental Diabetic Neuropathy

  1. Motoko Kishi,
  2. James Tanabe,
  3. James D. Schmelzer and
  4. Phillip A. Low
  1. From the Department of Neurology, Mayo Clinic, Rochester, Minnesota
    Diabetes 2002 Mar; 51(3): 819-824. https://doi.org/10.2337/diabetes.51.3.819
    PreviousNext
    • Article
    • Figures & Tables
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Chronic hyperglycemia results in a predominantly sensory neuropathy. Recent studies suggest that dorsal root ganglion (DRG) neurons comprise a specific target and may be responsible for the important complication of diabetic sensory neuropathy, since hyperglycemia for longer than 6 months results in a vacuolar ganglionopathy with associated radiculopathy and distal sensory neuropathy. We undertook morphometric analysis of L5 DRG neurons in seven diabetic rats and six age- and sex-matched littermates. Nerve conduction studies were also performed, and neuropathy was confirmed. Diabetes was induced with streptozotocin; duration of diabetes was 12 months. The DRG count for control rats was 15,304 ± 991 neurons. Two of seven diabetic DRG counts were reduced, but the group mean count at 14,847 ± 1,524 was not significantly reduced. The number of small neurons (type B) considerably exceeded that of large neurons (type A), at a ratio of 71:29. The percentage of large cells was significantly reduced in diabetic compared with control rats (P = 0.01). The large-diameter population can be subdivided into two groups; with this subdivision, the number of neurons <50 μm was not reduced in samples from diabetic rats, but the neurons of largest size (≥50 μm) were significantly reduced (by 41%).

    Footnotes

    • Address correspondence and reprint requests to Phillip A. Low, Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905. E-mail: low{at}mayo.edu.

      Received for publication 21 February 2001 and accepted in revised form 30 November 2001.

      DRG, dorsal root ganglion; STZ, streptozotocin.

    • DIABETES
    View Full Text
    PreviousNext
    Back to top

    In this Issue

    March 2002, 51(3)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Morphometry of Dorsal Root Ganglion in Chronic Experimental Diabetic Neuropathy
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Morphometry of Dorsal Root Ganglion in Chronic Experimental Diabetic Neuropathy
    Motoko Kishi, James Tanabe, James D. Schmelzer, Phillip A. Low
    Diabetes Mar 2002, 51 (3) 819-824; DOI: 10.2337/diabetes.51.3.819

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Morphometry of Dorsal Root Ganglion in Chronic Experimental Diabetic Neuropathy
    Motoko Kishi, James Tanabe, James D. Schmelzer, Phillip A. Low
    Diabetes Mar 2002, 51 (3) 819-824; DOI: 10.2337/diabetes.51.3.819
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • RESEARCH DESIGN AND METHODS
      • RESULTS
      • DISCUSSION
      • Acknowledgments
      • Footnotes
      • REFERENCES
    • Figures & Tables
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • Interphotoreceptor Retinol-Binding Protein Ameliorates Diabetes-Induced Retinal Dysfunction and Neurodegeneration Through Rhodopsin
    • Lung and Kidney ACE2 and TMPRSS2 in Renin-Angiotensin System Blocker–Treated Comorbid Diabetic Mice Mimicking Host Factors That Have Been Linked to Severe COVID-19
    • Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis
    Show more Complications

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.