Sulfonylurea-Mediated Stimulation of Insulin Exocytosis via an ATP-Sensitive K+ Channel–Independent Action
Abstract
Several reports indicate that hypoglycemic sulfonylureas augment Ca2+-dependent insulin secretion via mechanisms other than inhibition of the ATP-sensitive K+ channel. The effect involves a 65-kd protein in the granule membrane and culminates in intragranular acidification. Lowering of granule pH is necessary for the insulin granule to gain release competence. Proton pumping into the granule is driven by a v-type H+-ATPase, but requires simultaneous Cl− uptake into the granule via metabolically regulated ClC-3 Cl− channels to maintain electroneutrality. Here we discuss the possibility that modulation of granule ClC-3 channels represents the mechanism whereby sulfonylureas directly potentiate the β-cell exocytotic machinery.
Footnotes
-
Address correspondence and reprint requests to erik.renstrom{at}mphy.lu.se.
KATP channel, ATP-sensitive K+ channel; NSF, N-ethylmaleimide sensitive factor; SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor; SU, sulfonylurea; SUR, sulfonylurea receptor.
The symposium and the publication of this article have been made possible by an unrestricted educational grant from Servier, Paris.