Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Signal Transduction

Parasympathetic Innervation and Function of Endocrine Pancreas Requires the Glial Cell Line–Derived Factor Family Receptor α2 (GFRα2)

  1. Jari Rossi1,
  2. Paavo Santamäki1,
  3. Matti S. Airaksinen1 and
  4. Karl-Heinz Herzig2
  1. 1Neuroscience Center, University of Helsinki, Helsinki, Finland
  2. 2Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Department of Internal Medicine, University of Kuopio, Kuopio, Finland
  1. Address correspondence and reprint requests to Dr. Jari Rossi or Matti S. Airaksinen, Neuroscience Center, P.O. Box 56 (Viikinkaari 4), 00014 University of Helsinki, Finland. E-mail: jari.rossi{at}helsinki.fi or matti.airaksinen{at}helsinki.fi
Diabetes 2005 May; 54(5): 1324-1330. https://doi.org/10.2337/diabetes.54.5.1324
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Abstract

Vagal parasympathetic input to the islets of Langerhans is a regulator of islet hormone secretion, but factors promoting parasympathetic islet innervation are unknown. Neurturin signaling via glial cell line–derived neurotrophic factor family receptor α2 (GFRα2) has been demonstrated to be essential for the development of subsets of parasympathetic and enteric neurons. Here, we show that the parasympathetic nerve fibers and glial cells within and around the islets express GFRα2 and that islet parasympathetic innervation in GFRα2 knockout (KO) mice is reduced profoundly. In wild-type mice, neuroglucopenic stress produced a robust increase in plasma levels of islet hormones. In the GFRα2-KO mice, however, pancreatic polypeptide and insulin responses were completely lost and glucagon response was markedly impaired. Islet morphology and sympathetic innervation, as well as basal secretions of the islet hormones, were unaffected. Moreover, a glucose tolerance test failed to reveal differences between the genotypes, indicating that direct glucose-stimulated insulin secretion was not affected by GFRα2 deficiency. These results show that GFRα2 signaling is needed for development of the parasympathetic islet innervation that is critical for vagally induced hormone secretion. The GFRα2-KO mouse represents a useful model to study the role of parasympathetic innervation of the endocrine pancreas in glucose homeostasis.

  • 2-DG, 2-deoxyglucose
  • GFRα2, glial cell line–derived factor family receptor α2
  • PP, pancreatic polypeptide
  • TH, tyrosine hydroxylase
  • VAChT, vesicular acetylcholine transporter
  • VIP, vasoactive intestinal peptide

Footnotes

  • Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org.

    • Accepted February 16, 2005.
    • Received October 27, 2004.
  • DIABETES
View Full Text
PreviousNext
Back to top

In this Issue

May 2005, 54(5)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Parasympathetic Innervation and Function of Endocrine Pancreas Requires the Glial Cell Line–Derived Factor Family Receptor α2 (GFRα2)
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Parasympathetic Innervation and Function of Endocrine Pancreas Requires the Glial Cell Line–Derived Factor Family Receptor α2 (GFRα2)
Jari Rossi, Paavo Santamäki, Matti S. Airaksinen, Karl-Heinz Herzig
Diabetes May 2005, 54 (5) 1324-1330; DOI: 10.2337/diabetes.54.5.1324

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Parasympathetic Innervation and Function of Endocrine Pancreas Requires the Glial Cell Line–Derived Factor Family Receptor α2 (GFRα2)
Jari Rossi, Paavo Santamäki, Matti S. Airaksinen, Karl-Heinz Herzig
Diabetes May 2005, 54 (5) 1324-1330; DOI: 10.2337/diabetes.54.5.1324
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Activation of dsRNA-Dependent Protein Kinase R by miR-378 Sustains Metabolic Inflammation in Hepatic Insulin Resistance
  • STAT1 Dissociates Adipose Tissue Inflammation From Insulin Sensitivity in Obesity
  • Maternal Obesity and Western-Style Diet Impair Fetal and Juvenile Offspring Skeletal Muscle Insulin-Stimulated Glucose Transport in Nonhuman Primates
Show more Signal Transduction

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.