Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Pharmacology and Therapeutics

Angiotensin II Type 1 Receptor Blockade Improves β-Cell Function and Glucose Tolerance in a Mouse Model of Type 2 Diabetes

  1. Kwan Yi Chu1,
  2. Tung Lau1,
  3. Per-Ola Carlsson2 and
  4. Po Sing Leung1
  1. 1Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
  2. 2Departments of Medical Cell Biology and Medical Sciences, Uppsala University, Uppsala, Sweden
  1. Address correspondence and reprint requests to Professor P. S. Leung, PhD, Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. E-mail: psleung{at}cuhk.edu.hk
Diabetes 2006 Feb; 55(2): 367-374. https://doi.org/10.2337/diabetes.55.02.06.db05-1022
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading

Abstract

We identified an angiotensin-generating system in pancreatic islets and found that exogenously administered angiotensin II, after binding to its receptors (angiotensin II type 1 receptor [AT1R]), inhibits insulin release in a manner associated with decreased islet blood flow and (pro)insulin biosynthesis. The present study tested the hypothesis that there is a change in AT1R expression in the pancreatic islets of the obesity-induced type 2 diabetes model, the db/db mouse, which enables endogenous levels of angiotensin II to impair islet function. Islets from 10-week-old db/db and control mice were isolated and investigated. In addition, the AT1R antagonist losartan was administered orally to 4-week-old db/db mice for an 8-week period. We found that AT1R mRNA was upregulated markedly in db/db islets and double immunolabeling confirmed that the AT1R was localized to β-cells. Losartan selectively improved glucose-induced insulin release and (pro)insulin biosynthesis in db/db islets. Oral losartan treatment delayed the onset of diabetes, and reduced hyperglycemia and glucose intolerance in db/db mice, but did not affect the insulin sensitivity of peripheral tissues. The present findings indicate that AT1R antagonism improves β-cell function and glucose tolerance in young type 2 diabetic mice. Whether islet AT1R activation plays a role in the pathogenesis of human type 2 diabetes remains to be determined.

  • AT1R, angiotensin II type 1 receptor
  • KRBB, Krebs-Ringer bicarbonate buffer
  • OGTT, oral glucose tolerance test
  • RAS, renin-angiotensin system

Footnotes

    • Accepted November 10, 2005.
    • Received August 8, 2005.
  • DIABETES
View Full Text
PreviousNext
Back to top

In this Issue

February 2006, 55(2)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Angiotensin II Type 1 Receptor Blockade Improves β-Cell Function and Glucose Tolerance in a Mouse Model of Type 2 Diabetes
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Angiotensin II Type 1 Receptor Blockade Improves β-Cell Function and Glucose Tolerance in a Mouse Model of Type 2 Diabetes
Kwan Yi Chu, Tung Lau, Per-Ola Carlsson, Po Sing Leung
Diabetes Feb 2006, 55 (2) 367-374; DOI: 10.2337/diabetes.55.02.06.db05-1022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Angiotensin II Type 1 Receptor Blockade Improves β-Cell Function and Glucose Tolerance in a Mouse Model of Type 2 Diabetes
Kwan Yi Chu, Tung Lau, Per-Ola Carlsson, Po Sing Leung
Diabetes Feb 2006, 55 (2) 367-374; DOI: 10.2337/diabetes.55.02.06.db05-1022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • SGLT2 Inhibition Does Not Affect Myocardial Fatty Acid Oxidation or Uptake, but Reduces Myocardial Glucose Uptake and Blood Flow in Individuals With Type 2 Diabetes: A Randomized Double-Blind, Placebo-Controlled Crossover Trial
  • Dapagliflozin Suppresses ER Stress and Improves Subclinical Myocardial Function in Diabetes: From Bedside to Bench
  • Anti-Insulin Receptor Antibodies Improve Hyperglycemia in a Mouse Model of Human Insulin Receptoropathy
Show more Pharmacology and Therapeutics

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.