Mechanisms of Impaired Fasting Glucose and Glucose Intolerance Induced by a ∼50% Pancreatectomy
Abstract
Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) often coexist and as such represent a potent risk factor for subsequent development of type 2 diabetes. β-Cell mass is ∼50% deficient in IFG and ∼65% deficient in type 2 diabetes. To establish the effect of a ∼50% deficit in β-cell mass on carbohydrate metabolism, we performed a ∼50% partial pancreatectomy versus sham surgery in 14 dogs. Insulin secretion was quantified from insulin concentrations measured in the portal vein at 1-min sampling intervals under basal conditions, after a 30-g oral glucose, and during a hyperglycemic clamp. Insulin sensitivity was measured by a hyperinsulinemic-euglycemic clamp combined with isotope dilution. Partial pancreatectomy resulted in IFG and IGT. After partial pancreatectomy both basal and glucose-stimulated insulin secretion were decreased through the mechanism of a selective ∼50 and ∼80% deficit in insulin pulse mass, respectively (P < 0.05). These defects in insulin secretion were partially offset by decreased hepatic insulin clearance (P < 0.05). Partial pancreatectomy also caused a ∼40% decrease in insulin-stimulated glucose disposal (P < 0.05), insulin sensitivity after partial pancreatectomy being related to insulin pulse amplitude (r = 0.9, P < 0.01). We conclude that a ∼50% deficit in β-cell mass can recapitulate the alterations in glucose-mediated insulin secretion and insulin action in humans with IFG and IGT. These data support a mechanistic role of a deficit in β-cell mass in the evolution of IFG/IGT and subsequently type 2 diabetes.
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
- Accepted May 19, 2006.
- Received March 15, 2006.
- DIABETES