Cx36-Mediated Coupling Reduces β-Cell Heterogeneity, Confines the Stimulating Glucose Concentration Range, and Affects Insulin Release Kinetics
Abstract
We studied the effect of gap junctional coupling on the excitability of β-cells in slices of pancreas, which provide a normal environment for islet cells. The electrophysiological properties of β-cells from mice (C57Bl/6 background) lacking the gap junction protein connexin36 (Cx36−/−) were compared with heterozygous (Cx36+/−) and wild-type littermates (Cx36+/+) and with frequently used wild-type NMRI mice. Most electrophysiological characteristics of β-cells were found to be unchanged after the knockout of Cx36, except the density of Ca2+ channels, which was increased in uncoupled cells. With closed ATP-sensitive K+ (KATP) channels, the electrically coupled β-cells of Cx36+/+ and Cx36+/− mice were hyperpolarized by the membrane potential of adjacent, inactive cells. Additionally, the hyperpolarization of one β-cell could attenuate or even stop the electrical activity of nearby coupled cells. In contrast, β-cells of Cx36−/− littermates with blocked KATP channels rapidly depolarized and exhibited a continuous electrical activity. Absence of electrical coupling modified the electrophysiological properties of β-cells consistent with the reported increase in basal insulin release and altered the switch on/off response of β-cells during an acute drop of the glucose concentration. Our data indicate an important role for Cx36-gap junctions in modulating stimulation threshold and kinetics of insulin release.
Footnotes
-
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
- Accepted December 15, 2006.
- Received February 19, 2006.
- DIABETES