Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Islet Studies

Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion

  1. Corinne Leloup1,
  2. Cécile Tourrel-Cuzin2,
  3. Christophe Magnan2,
  4. Melis Karaca2,
  5. Julien Castel2,
  6. Lionel Carneiro1,
  7. Anne-Laure Colombani1,
  8. Alain Ktorza2,
  9. Louis Casteilla1 and
  10. Luc Pénicaud1
  1. 1Department of Metabolism, Plasticity, and Mitochondria, Unité Mixte de Recherche 5241, Centre National de la Recherche Scientifique-Université Paul Sabatier, Institut Fédératif de Recherche 31, Institut Fédératif de Recherche 109, Toulouse, France
  2. 2Unité Mixte de Recherche 7059, Centre National de la Recherche Scientifique, Paris, France
  1. Corresponding author: Corinne Leloup, coleloup{at}toulouse.inserm.fr
Diabetes 2009 Mar; 58(3): 673-681. https://doi.org/10.2337/db07-1056
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading

Abstract

OBJECTIVE—Insulin secretion involves complex events in which the mitochondria play a pivotal role in the generation of signals that couple glucose detection to insulin secretion. Studies on the mitochondrial generation of reactive oxygen species (ROS) generally focus on chronic nutrient exposure. Here, we investigate whether transient mitochondrial ROS production linked to glucose-induced increased respiration might act as a signal for monitoring insulin secretion.

RESEARCH DESIGN AND METHODS—ROS production in response to glucose was investigated in freshly isolated rat islets. ROS effects were studied using a pharmacological approach and calcium imaging.

RESULTS—Transient glucose increase from 5.5 to 16.7 mmol/l stimulated ROS generation, which was reversed by antioxidants. Insulin secretion was dose dependently blunted by antioxidants and highly correlated with ROS levels. The incapacity of β-cells to secrete insulin in response to glucose with antioxidants was associated with a decrease in ROS production and in contrast to the maintenance of high levels of ATP and NADH. Then, we investigated the mitochondrial origin of ROS (mROS) as the triggering signal. Insulin release was mimicked by the mitochondrial-complex blockers, antimycin and rotenone, that generate mROS. The adding of antioxidants to mitochondrial blockers or to glucose was used to lower mROS reversed insulin secretion. Finally, calcium imaging on perifused islets using glucose stimulation or mitochondrial blockers revealed that calcium mobilization was completely reversed using the antioxidant trolox and that it was of extracellular origin. No toxic effects were present using these pharmacological approaches.

CONCLUSIONS—Altogether, these complementary results demonstrate that mROS production is a necessary stimulus for glucose-induced insulin secretion.

Footnotes

  • Published ahead of print at http://diabetes.diabetesjournals.org on 10 December 2008.

    Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

    The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Accepted December 4, 2008.
    • Received July 31, 2007.
  • DIABETES
View Full Text
PreviousNext
Back to top

In this Issue

March 2009, 58(3)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion
Corinne Leloup, Cécile Tourrel-Cuzin, Christophe Magnan, Melis Karaca, Julien Castel, Lionel Carneiro, Anne-Laure Colombani, Alain Ktorza, Louis Casteilla, Luc Pénicaud
Diabetes Mar 2009, 58 (3) 673-681; DOI: 10.2337/db07-1056

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion
Corinne Leloup, Cécile Tourrel-Cuzin, Christophe Magnan, Melis Karaca, Julien Castel, Lionel Carneiro, Anne-Laure Colombani, Alain Ktorza, Louis Casteilla, Luc Pénicaud
Diabetes Mar 2009, 58 (3) 673-681; DOI: 10.2337/db07-1056
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia
  • Acyl-Ghrelin Influences Pancreatic β-Cell Function by Interference with KATP Channels
  • Pancreatic β-Cell–Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion
Show more Islet Studies

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.