Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Article

Upregulation of the Mammalian Target of Rapamycin Complex 1 Pathway by Ras Homolog Enriched in Brain in Pancreatic β-Cells Leads to Increased β-Cell Mass and Prevention of Hyperglycemia

  1. Suirin Hamada1,
  2. Kenta Hara1,
  3. Takeshi Hamada1,
  4. Hisafumi Yasuda1,
  5. Hiroaki Moriyama1,
  6. Rika Nakayama2,
  7. Masao Nagata1 and
  8. Koichi Yokono1
  1. 1Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan;
  2. 2Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN, Kobe, Japan.
  1. Corresponding author: Kenta Hara, harak{at}kobe-u.ac.jp.
Diabetes 2009 Jun; 58(6): 1321-1332. https://doi.org/10.2337/db08-0519
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading

Abstract

OBJECTIVE Components of insulin/IGF-1 receptor–mediated signaling pathways in pancreatic β-cells have been implicated in the development of diabetes, in part through the regulation of β-cell mass in vivo. Studies in vitro have shown that the protein Ras homolog enriched in brain (Rheb) plays a key role as a positive upstream regulator of the mammalian target of rapamycin complex 1 (mTORC1) pathway in integrating inputs from nutrients and growth factors for cell growth. Our objective was to investigate the role of the mTORC1 pathway in the regulation of β-cell mass in vivo.

RESEARCH DESIGN AND METHODS We generated transgenic mice that overexpress Rheb in β-cells. We examined the activation of the mTORC1 pathway and its effects on β-cell mass, on glucose metabolism, and on protection against hyperglycemia.

RESULTS Immunoblots of islet extracts revealed that the phosphorylation levels of ribosomal protein S6 and eukaryotic initiation factor 4E binding protein 1, downstream effectors for mTORC1, were upregulated in transgenic β-cells. Immunostaining of the pancreatic sections with anti–phospho-S6 antibody confirmed upregulation of the mTORC1 pathway in β-cells in vivo. The mice showed improved glucose tolerance with higher insulin secretion. This arose from increased β-cell mass accompanied by increased cell size. The mice also exhibited resistance to hyperglycemia induced by streptozotocin and obesity.

CONCLUSIONS Activation of the mTORC1 pathway by Rheb led to increased β-cell mass in this mouse model without producing obvious unfavorable effects, giving a potential approach for the treatment of β-cell failure and diabetes.

Footnotes

  • The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

    • Received April 18, 2008.
    • Accepted February 25, 2009.
  • Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

  • © 2009 by the American Diabetes Association.
View Full Text
PreviousNext
Back to top

In this Issue

June 2009, 58(6)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Upregulation of the Mammalian Target of Rapamycin Complex 1 Pathway by Ras Homolog Enriched in Brain in Pancreatic β-Cells Leads to Increased β-Cell Mass and Prevention of Hyperglycemia
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Upregulation of the Mammalian Target of Rapamycin Complex 1 Pathway by Ras Homolog Enriched in Brain in Pancreatic β-Cells Leads to Increased β-Cell Mass and Prevention of Hyperglycemia
Suirin Hamada, Kenta Hara, Takeshi Hamada, Hisafumi Yasuda, Hiroaki Moriyama, Rika Nakayama, Masao Nagata, Koichi Yokono
Diabetes Jun 2009, 58 (6) 1321-1332; DOI: 10.2337/db08-0519

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Upregulation of the Mammalian Target of Rapamycin Complex 1 Pathway by Ras Homolog Enriched in Brain in Pancreatic β-Cells Leads to Increased β-Cell Mass and Prevention of Hyperglycemia
Suirin Hamada, Kenta Hara, Takeshi Hamada, Hisafumi Yasuda, Hiroaki Moriyama, Rika Nakayama, Masao Nagata, Koichi Yokono
Diabetes Jun 2009, 58 (6) 1321-1332; DOI: 10.2337/db08-0519
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

Original Article

  • An Update on the Molecular Actions of Fenofibrate and Its Clinical Effects on Diabetic Retinopathy and Other Microvascular End Points in Patients With Diabetes
  • Loss of Prohibitin Induces Mitochondrial Damages Altering β-Cell Function and Survival and Is Responsible for Gradual Diabetes Development
  • Cbl-b Is a Critical Regulator of Macrophage Activation Associated With Obesity-Induced Insulin Resistance in Mice
Show more Original Article

Islet Studies

  • An Update on the Molecular Actions of Fenofibrate and Its Clinical Effects on Diabetic Retinopathy and Other Microvascular End Points in Patients With Diabetes
  • Loss of Prohibitin Induces Mitochondrial Damages Altering β-Cell Function and Survival and Is Responsible for Gradual Diabetes Development
  • Cbl-b Is a Critical Regulator of Macrophage Activation Associated With Obesity-Induced Insulin Resistance in Mice
Show more Islet Studies

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.