Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Online Letters to the Editor

Comment on: Straznicky et al. Neuroadrenergic Dysfunction Along the Diabetes Continuum: A Comparative Study in Obese Metabolic Syndrome Subjects. Diabetes 2012;61:2506–2516

  1. Simona Frontoni
  1. From Endocrinology, Diabetes and Metabolism, S. Giovanni Calibita Fatebenefratelli Hospital, Rome, Italy; and the Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
  1. Corresponding author: Simona Frontoni, frontoni{at}uniroma2.it.
Diabetes 2013 Jan; 62(1): e1-e1. https://doi.org/10.2337/db12-1087
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading

In the recent article by Straznicky et al. (1), the authors demonstrate that the onset of diabetes is associated with increased central sympathetic outflow, altered norepinephrine disposition, and blunted sympathetic responsiveness to carbohydrates. In fact, insulin resistance highly correlated with neuroadrenergic function, as shown by the independent correlation of insulin-stimulated glucose uptake (M/I) with whole-body norepinephrine spillover. Muscle sympathetic nerve activity (MSNA), on the contrary, failed to correlate with insulin resistance. This apparently surprising result can, however, find a logical explanation (2), which actually reinforces the data of Straznicky et al. Sympathetic overactivity, similarly to insulin resistance, should not be viewed as an on-off perturbation, but it most probably interferes with glucose metabolism following its own time course. An initial, primary prevalence of sympathetic over parasympathetic activity might be responsible for an increased metabolic state, accompanied by increased insulin sensitivity (3) (Fig. 1, circle A). As in many other hormone-regulated pathways, this state is followed by a downregulation of the β-adrenergic metabolic responsiveness (Fig. 1, circle B) (reduced basal metabolic rate and facultative thermogenic effect of food), eventually accompanied by increased tendency toward anabolic processes and reduced ability to dissipate energy, i.e., weight gain (particularly at the visceral level), and finally insulin resistance (Fig. 1, circle C). Again, as in many other hormone-regulated pathways, sympathetic activity attempts to overcome (with norepinephrine overflow) the β-adrenergic receptor downregulation, maintaining overall MSNA activity apparently unmodified. Finally, this could represent the onset of a vicious cycle, in which insulin resistance further stimulates sympathetic activity and worsens insulin resistance itself (Fig. 1, circle D).

FIG. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
FIG. 1.

Schematic representation of the time course of the relationship between autonomic dysfunction and insulin sensitivity.

According to this hypothesis, the effects of sympathetic activation on insulin-mediated glucose metabolism are time dependent and, therefore, impact differently according to the stage of autonomic imbalance. At the stage the current study was performed, the increase of arterial norepinephrine concentration progressively downregulates β-receptors and, consequently, reduces insulin sensitivity: this explains why the two parameters strongly correlate. Reduction of β-receptors, in turn, nicely explains why MSNA increase is only partial, as suggested by the similar burst frequency and median burst amplitude in impaired glucose tolerant and diabetic subjects. As a consequence, no correlation between MSNA and insulin-mediated glucose metabolism can be expected. In conclusion, we believe that this study strongly supports the hypothesis of a continuous changing in the interrelationship between autonomic function and glucose metabolism from the early stage of insulin resistance to the onset of diabetes and, eventually, to the development and progression of autonomic diabetic neuropathy (4).

ACKNOWLEDGMENTS

No potential conflicts of interest relevant to this article were reported.

  • © 2013 by the American Diabetes Association.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

REFERENCES

  1. ↵
    1. Straznicky NE,
    2. Grima MT,
    3. Sari CI,
    4. et al
    . Neuroadrenergic dysfunction along the diabetes continuum: a comparative study in obese metabolic syndrome subjects. Diabetes 2012;61:2506–2516
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Frontoni S,
    2. Bracaglia D,
    3. Gigli F
    . Relationship between autonomic dysfunction, insulin resistance and hypertension, in diabetes. Nutr Metab Cardiovasc Dis 2005;15:441–449
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Lupien JR,
    2. Hirshman MF,
    3. Horton ES
    . Effects of norepinephrine infusion on in vivo insulin sensitivity and responsiveness. Am J Physiol 1990;259:E210–E215
    OpenUrlPubMed
  4. ↵
    1. Spallone V,
    2. Ziegler D,
    3. Freeman R,
    4. et al
    .; Toronto Consensus Panel on Diabetic Neuropathy. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 22 June 2011 [Epub ahead of print]
View Abstract
PreviousNext
Back to top
Diabetes: 62 (1)

In this Issue

January 2013, 62(1)
  • Table of Contents
  • About the Cover
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comment on: Straznicky et al. Neuroadrenergic Dysfunction Along the Diabetes Continuum: A Comparative Study in Obese Metabolic Syndrome Subjects. Diabetes 2012;61:2506–2516
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Comment on: Straznicky et al. Neuroadrenergic Dysfunction Along the Diabetes Continuum: A Comparative Study in Obese Metabolic Syndrome Subjects. Diabetes 2012;61:2506–2516
Simona Frontoni
Diabetes Jan 2013, 62 (1) e1; DOI: 10.2337/db12-1087

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Comment on: Straznicky et al. Neuroadrenergic Dysfunction Along the Diabetes Continuum: A Comparative Study in Obese Metabolic Syndrome Subjects. Diabetes 2012;61:2506–2516
Simona Frontoni
Diabetes Jan 2013, 62 (1) e1; DOI: 10.2337/db12-1087
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Comment on: Sitnick et al. Skeletal Muscle Triacylglycerol Hydrolysis Does Not Influence Metabolic Complications of Obesity. Diabetes 2013;62:3350–3361
  • Comment on: Sukumar et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes 2013;62:2130–2134
  • Comment on: Lazo et al. NH2-Terminal Pro–Brain Natriuretic Peptide and Risk of Diabetes. Diabetes 2013;62:3189–3193
Show more Online Letters to the Editor

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.