Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Online Letters to the Editor

Response to Comment on: Sukumar et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes 2013;62:2130–2134

  1. Piruthivi Sukumar and
  2. Mark T. Kearney
  1. Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, West Yorkshire, U.K.
  1. Corresponding author: Mark T. Kearney, m.t.kearney{at}leeds.ac.uk.
Diabetes 2013 Dec; 62(12): e31-e31. https://doi.org/10.2337/db13-1392
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

We would like to thank Drs. Jandeleit-Dahm and Schmidt (1) for their interesting comments regarding our study examining the role of the Nox2 isoform of NADPH oxidase in insulin resistance–related endothelial cell dysfunction (2). We would also like to congratulate them on their own elegant and comprehensive piece of work examining the role of the Nox isoforms Nox1, Nox2, and Nox4 in the development of advanced type 1 diabetes–related atherosclerosis (3).

Based on their findings that Nox1 may be more important in diabetes-related atherosclerosis than other isoforms of NADPH oxidase, the authors raise concerns regarding our conclusions that Nox2 has a critical role in insulin resistance–related endothelial dysfunction. They also reported that holoinsufficiency of Nox2 in mice rendered diabetic using streptozotocin led to a substantial mortality rate.

It is important to recognize the fundamental differences between our studies and those of Jandeleit-Dahm and colleagues (3). Jandeleit-Dahm and colleagues and You et al. (4) administered streptozotocin to render mice diabetic. In the article by Jandeleit-Dahm and colleagues, this led to a severe model of advanced insulin-deficient diabetes leading to substantial weight loss, hyperglycemia, and increased triglycerides and cholesterol. Moreover, it is well established that streptozotocin-induced diabetes leads to immune dysfunction (5), which may account for the findings reported by Jandeleit-Dahm and colleagues regarding mortality in Nox2 deficient mice. A comparison between our study and that of Jandeleit-Dahm and colleagues is therefore difficult to make.

In our studies, we used two complementary models of human disease before the onset of hyperglycemia with the ApoE gene intact: 1) endothelium-specific insulin resistance (mice expressing a mutant human insulin receptor specifically in the endothelium) and 2) whole-body insulin resistance (mice with haploinsufficiency of the insulin receptor). We found no increase in Nox1 or Nox4 expression in endothelial cells from these mice, but did demonstrate increased Nox2. Mice with endothelium-specific insulin resistance deficient in Nox2 or mice treated with the Nox2 inhibitor gp91ds-tat did not have increased mortality.

In our studies, acute and chronic inhibition of Nox2 led to restoration of endothelial vasorelaxation and superoxide to the levels seen in wild-type littermates, providing compelling evidence that Nox2 is a critical determinant of endothelial dysfunction in insulin resistance. We did not examine the role of Nox2 in severe hyperglycemia–induced endothelial dysfunction and atherosclerosis. In the commentary to our article, Dr. Symons (6) raised a number of suggestions for future work, one of which was to assess the role of Nox2 in insulin resistance–related atherosclerosis; we are currently pursuing this avenue of work. The work from the laboratories of Drs. Jandeleit-Dahm and Schmidt and our own highlight the complexity of diabetes-related vascular disease and illustrate that a “one size fits all” approach is not appropriate for the treatment of this lethal complication of diabetes.

Acknowledgments

The work in the laboratory of M.T.K. is supported by the British Heart Foundation.

No potential conflicts of interest relevant to this article were reported.

  • © 2013 by the American Diabetes Association.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

REFERENCES

  1. ↵
    1. Jandeleit-Dahm KAM,
    2. Schmidt HHHW
    . Comment on: Sukumar et al. Nox2 NADPH oxidase has a critical role in insulin resistance–related endothelial cell dysfunction. Diabetes 2013;62:2130–2134(Letter). Diabetes 2013;62:e30. DOI: 10.2337/db13-1286
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Sukumar P,
    2. Viswambharan H,
    3. Imrie H,
    4. et al
    . Nox2 NADPH oxidase has a critical role in insulin resistance–related endothelial cell dysfunction. Diabetes 2013;62:2130–2134
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Gray SP,
    2. Di Marco E,
    3. Okabe J,
    4. et al
    . NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 2013;127:1888–1902
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. You YH,
    2. Okada S,
    3. Ly S,
    4. et al
    . Role of Nox2 in diabetic kidney disease. Am J Physiol Renal Physiol 2013;304:F840–F848
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Muller YD,
    2. Golshayan D,
    3. Ehirchiou D,
    4. et al
    . Immunosuppressive effects of streptozotocin-induced diabetes result in absolute lymphopenia and a relative increase of T regulatory cells. Diabetes 2011;60:2331–2340
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Symons JD
    . Opportunity “nox”: a novel approach to preventing endothelial dysfunction in the context of insulin resistance. Diabetes 2013;62:1818–1820
    OpenUrlFREE Full Text
PreviousNext
Back to top
Diabetes: 62 (12)

In this Issue

December 2013, 62(12)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by Author
  • Masthead (PDF)
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Response to Comment on: Sukumar et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes 2013;62:2130–2134
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Response to Comment on: Sukumar et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes 2013;62:2130–2134
Piruthivi Sukumar, Mark T. Kearney
Diabetes Dec 2013, 62 (12) e31; DOI: 10.2337/db13-1392

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Response to Comment on: Sukumar et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes 2013;62:2130–2134
Piruthivi Sukumar, Mark T. Kearney
Diabetes Dec 2013, 62 (12) e31; DOI: 10.2337/db13-1392
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Acknowledgments
    • REFERENCES
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Comment on: Sitnick et al. Skeletal Muscle Triacylglycerol Hydrolysis Does Not Influence Metabolic Complications of Obesity. Diabetes 2013;62:3350–3361
  • Comment on: Sukumar et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin Resistance–Related Endothelial Cell Dysfunction. Diabetes 2013;62:2130–2134
  • Comment on: Lazo et al. NH2-Terminal Pro–Brain Natriuretic Peptide and Risk of Diabetes. Diabetes 2013;62:3189–3193
Show more Online Letters to the Editor

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.