Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Metabolism

Elevated S-Adenosylhomocysteine Alters Adipocyte Functionality With Corresponding Changes in Gene Expression and Associated Epigenetic Marks

  1. Sherry Ngo⇑,
  2. Xiaoling Li,
  3. Renelle O’Neill,
  4. Chandrakanth Bhoothpur,
  5. Peter Gluckman and
  6. Allan Sheppard
  1. Developmental Epigenetics Group, Liggins Institute, The University of Auckland, Auckland, New Zealand
  1. Corresponding author: Sherry Ngo, s.ngo{at}auckland.ac.nz.
Diabetes 2014 Jul; 63(7): 2273-2283. https://doi.org/10.2337/db13-1640
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading

Abstract

Maternal deficiencies in micronutrients affecting one-carbon metabolism before and during pregnancy can influence metabolic status and the degree of insulin resistance and obesity of the progeny in adulthood. Notably, maternal and progeny plasma S-adenosylhomocysteine (SAH) levels are both elevated after vitamin deficiency in pregnancy. Therefore, we investigated whether this key one-carbon cycle intermediate directly affects adipocyte differentiation and function. We found that expansion and differentiation of murine 3T3-L1 preadipocytes in the presence of SAH impaired both basal and induced glucose uptake as well as lipolysis compared with untreated controls. SAH did not alter preadipocyte factor 1 (Dlk1) or peroxisome proliferator–activated receptor-γ 2 (Pparγ2) but significantly reduced expression of CAAT enhancer-binding protein-α (Cebpα), Cebpβ, and retinoid x receptor-α (Rxrα) compared with untreated adipocytes. SAH increased Rxrα methylation on a CpG unit (chr2:27,521,057+, chr2:27,521,049+) and CpG residue (chr2:27,521,080+), but not Cebpβ methylation, relative to untreated adipocytes. Trimethylated histone H3-Lys27 occupancy was significantly increased on Cebpα and Rxrα promoters in SAH-treated adipocytes, consistent with the reduction in gene expression. In conclusion, SAH did not affect adipogenesis per se but altered adipocyte functionality through epigenetic mechanisms, such that they exhibited altered glucose disposal and lipolysis. Our findings implicate micronutrient imbalance in subsequent modulation of adipocyte function.

  • Received October 23, 2013.
  • Accepted February 20, 2014.
  • © 2014 by the American Diabetes Association.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

View Full Text
PreviousNext
Back to top
Diabetes: 63 (7)

In this Issue

July 2014, 63(7)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by Author
  • Masthead (PDF)
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Elevated S-Adenosylhomocysteine Alters Adipocyte Functionality With Corresponding Changes in Gene Expression and Associated Epigenetic Marks
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Elevated S-Adenosylhomocysteine Alters Adipocyte Functionality With Corresponding Changes in Gene Expression and Associated Epigenetic Marks
Sherry Ngo, Xiaoling Li, Renelle O’Neill, Chandrakanth Bhoothpur, Peter Gluckman, Allan Sheppard
Diabetes Jul 2014, 63 (7) 2273-2283; DOI: 10.2337/db13-1640

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Elevated S-Adenosylhomocysteine Alters Adipocyte Functionality With Corresponding Changes in Gene Expression and Associated Epigenetic Marks
Sherry Ngo, Xiaoling Li, Renelle O’Neill, Chandrakanth Bhoothpur, Peter Gluckman, Allan Sheppard
Diabetes Jul 2014, 63 (7) 2273-2283; DOI: 10.2337/db13-1640
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Research Design and Methods
    • Results
    • Discussion
    • Article Information
    • References
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cardiac Autophagy Deficiency Attenuates ANP Production and Disrupts Myocardial-Adipose Cross Talk, Leading to Increased Fat Accumulation and Metabolic Dysfunction
  • Lysosomal Acid Lipase Drives Adipocyte Cholesterol Homeostasis and Modulates Lipid Storage in Obesity, Independent of Autophagy
  • Central Regulation of Branched-Chain Amino Acids Is Mediated by AgRP Neurons
Show more Metabolism

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.