Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Complications

Mineralocorticoid Receptor Blockade Improves Coronary Microvascular Function in Individuals With Type 2 Diabetes

  1. Rajesh Garg1,
  2. Ajay D. Rao1,
  3. Maria Baimas-George1,
  4. Shelley Hurwitz1,
  5. Courtney Foster2,
  6. Ravi V. Shah3,
  7. Michael Jerosch-Herold4,
  8. Raymond Y. Kwong5,
  9. Marcelo F. Di Carli2,3,5 and
  10. Gail K. Adler1⇑
  1. 1Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
  2. 2Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
  3. 3Noninvasive Cardiovascular Imaging Program, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
  4. 4Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
  5. 5Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
  1. Corresponding author: Gail K. Adler, gadler{at}partners.org.
Diabetes 2015 Jan; 64(1): 236-242. https://doi.org/10.2337/db14-0670
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Article Figures & Tables

Figures

  • Tables
  • Figure 1
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1

    An ANCOVA model predicting the change with treatment in CFR. Spironolactone treatment improved CFR as compared with HCTZ (*P = 0.02), placebo (†P = 0.05), and combined HCTZ/placebo groups (‡P = 0.01). HCTZ and placebo had similar effects on CFR (P = 0.79). The predicted adjusted change (95% CI) in posttreatment CFR was 0.38 (0.11, 0.65) with spironolactone, −0.10 (−0.38, 0.18) with HCTZ, and −0.05 (−0.38, 0.28) with placebo. Model adjusts for race, statin use, baseline CFR, and the change in BMI over the treatment period.

Tables

  • Figures
  • Table 1

    Characteristics of study population at baseline assessment

    Spironolactone groupHCTZ groupPlacebo group
    n232417
    Mean age (years)56 ± 653 ± 755 ± 10
    Male (n [%])17 (74)13 (54)10 (59)
    Race (n [%])
     Caucasian17 (74)17 (71)8 (47)
     African American4 (17)6 (25)7 (41)
     Other2 (9)1 (4)2 (12)
    BMI (kg/m2)31.4 ± 4.532.5 ± 5.431.3 ± 4.2
    BP (mmHg)
     Systolic123 ± 11124 ± 14125 ± 13
     Diastolic75 ± 774 ± 977 ± 10
    Duration of diabetes (years)9 ± 77 ± 67 ± 6
    Diabetes medications (n [%])
     Metformin16 (70)20 (83)16 (94)
     Insulin3 (13)3 (13)3 (18)
     Sulfonylurea7 (30)7 (29)7 (41)
     Thiazolidinedione1 (4)1 (4)0 (0)
     GLP-1 analog1 (4)1 (4)2 (12)
     Dipeptidyl peptidase-4 inhibitor1 (4)0 (0)0 (0)
    Antihypertensive medications (n [%])
     Enalapril23 (100)24 (100)17 (100)
     Amlodipine7 (30)6 (25)4 (24)
    Statin use (n [%])17 (74)20 (83)11 (65)
    Fasting laboratory data
     Blood glucose (mg/dL)105 ± 23106 ± 25105 ± 24
     Total cholesterol (mg/dL)150 ± 35153 ± 24139 ± 24
     LDL cholesterol (mg/dL)81 ± 2782 ± 2075 ± 21
     HDL cholesterol (mg/dL)47 ± 1245 ± 1241 ± 12
     Triglycerides (mg/dL)113 ± 39130 ± 77120 ± 72
     HbA1c (%)6.6 ± 0.47.0 ± 0.97.0 ± 0.7
     Serum sodium (mmol/L)139.5 ± 2.1139.0 ± 2.1139.2 ± 1.5
     Serum potassium (mmol/L)4.2 ± 0.34.3 ± 0.34.2 ± 0.2
     Creatinine clearance rate (mL/min)129 ± 30126 ± 26124 ± 38
     Plasma renin activity (ng/mL/h)1.5 ± 2.22.3 ± 3.32.4 ± 3.9
     Serum angiotensin II (pg/mL)18.01 ± 8.8922.59 ± 6.1719.15 ± 5.82
     Serum aldosterone (ng/dL)3.13 ± 1.463.21 ± 1.193.84 ± 2.14
    Echocardiography
     Mitral inflow
     E (m/s)0.76 ± 0.140.74 ± 0.140.68 ± 0.13
     A (m/s)0.68 ± 0.170.66 ± 0.160.67 ± 0.17
     Deceleration time (ms)220.38 ± 37.94212.04 ± 37.36216.88 ± 31.75
     E/A ratio1.15 ± 0.231.13 ± 0.291.05 ± 0.23
     Tissue Doppler imaging
     e’ (m/s)0.11 ± 0.020.11 ± 0.030.11 ± 0.02
     E/e’ ratio7.24 ± 2.006.92 ± 1.596.58 ± 1.68
    Cardiac MRI
     LV mass index (g/m2)46.4 ± 12.243.6 ± 10.946.7 ± 11.2
     LV ejection fraction (%)61.4 ± 4.560.2 ± 7.060.4 ± 5.0
     Myocardial extracellular volume0.36 ± 0.060.34 ± 0.040.38 ± 0.04
    24-h Urine results
     Sodium (mmol/24 h)291 ± 74258 ± 72256 ± 77
     Creatinine (mg/24 h)1,599.7 ± 407.51,510.4 ± 326.91,537.8 ± 466.1
     Potassium (mmol/24 h)97.8 ± 15.091.1 ± 19.188.8 ± 29.1
     Aldosterone (μg/24 h)6.49 ± 6.467.19 ± 5.166.17 ± 4.99
    • Data are expressed as mean ± SD unless stated otherwise. There were no significant differences between treatment groups prerandomization.

  • Table 2

    Change in study parameter with treatment†

    Spironolactone groupHCTZ groupPlacebo groupP value spiro vs. HCTZP value spiro vs. HCTZ + placebo
    n232417
    Δ BMI (kg/m2)0.07 ± 0.9−0.06 ± 1.02−0.11 ± 1.250.590.59
    Δ BP (mmHg)
     Systolic−7 ± 13*−5 ± 10*−1 ± 120.560.25
     Diastolic−5 ± 7‡−2 ± 7−2 ± 70.070.09
    Δ Fasting laboratory data
     Glucose (mg/dL)10.5 ± 23.98.3 ± 25.12.7 ± 11.80.990.52
     Total cholesterol (mg/dL)3.6 ± 32.12.4 ± 30.213.8 ± 32.50.240.12
     LDL cholesterol (mg/dL)2.9 ± 25.41.6 ± 25.29.7 ± 30.30.460.36
     HDL cholesterol (mg/dL)−2.0 ± 5.61.6 ± 5.02.8 ± 6.10.050.01
     Triglycerides (mg/dL)13.4 ± 37.71.9 ± 46.911.8 ± 48.30.740.65
     HbA1c (%)0.16 ± 0.390.08 ± 0.750.06 ± 0.450.940.64
     Serum sodium (mmol/L)−1.5 ± 2.6−0.3 ± 2.10.0 ± 2.80.090.04
     Serum potassium (mmol/L)0.22 ± 0.3†0.03 ± 0.30.04 ± 0.20.020.005
    Δ 24-h Urine sodium (mmol/24 h)−19.6 ± 76.93.9 ± 78.516.5 ± 71.30.310.15
    Δ Creatinine clearance (mL/min)−2.6 ± 21.4−1.0 ± 20.4−0.8 ± 13.00.960.98
    Cardiac MRI
     Δ LV mass index (g/m2)6.03 ± 22.504.81 ± 26.248.00 ± 24.051.000.91
     Δ LV ejection fraction (%)−0.87 ± 5.830.32 ± 8.251.08 ± 5.200.220.16
     Δ Extracellular volume0.00 ± 0.080.00 ± 0.040.00 ± 0.030.640.94
    Echocardiography
     Mitral inflow
     Δ E (m/s)−0.03 ± 0.15−0.02 ± 0.090.01 ± 0.090.870.66
     Δ A (m/s)−0.02 ± 0.12−0.02 ± 0.11−0.01 ± 0.120.840.88
     Δ Deceleration time (ms)−17.93 ± 60.908.18 ± 61.247.56 ± 57.340.490.53
     Δ E/A ratio−0.02 ± 0.320.02 ± 0.180.04 ± 0.210.750.58
     Tissue Doppler imaging
     Δ e’ (m/s)−0.01 ± 0.020.00 ± 0.020.00 ± 0.010.450.47
    Secondary outcome
     Δ E/e’ ratio0.02 ± 1.610.06 ± 1.350.64 ± 1.950.650.85
    • †Posttreatment study parameter minus baseline study parameter.

    • *P < 0.05, indicates significant change from baseline within treatment group.

    • ‡P < 0.01, indicates significant change from baseline within treatment group. spiro, spironolactone.

  • Table 3

    Cardiac PET imaging parameters

    CharacteristicSpironolactone groupHCTZ groupPlacebo groupP value spiro vs. HCTZP value spiro vs. HCTZ + placebo
    n222216
    Primary outcome
     Change in global CFR  (posttreatment minus baseline)*0.33 ± 0.83−0.10 ± 0.650.02 ± 1.030.040.05
    Additional measures
     Change in rest global MBF  (mL ⋅ g−1 ⋅ min−1)*−0.07 ± 0.160.01 ± 0.11−0.07 ± 0.130.140.46
     Change in stress global MBF  (mL ⋅ g−1 ⋅ min−1)*0.06 ± 0.46−0.02 ± 0.34−0.08 ± 0.570.750.54
    Prerandomization
     Global CFR2.77 ± 0.822.92 ± 0.522.68 ± 0.93
     Rest global MBF  (mL ⋅ g−1 ⋅ min−1)0.78 ± 0.230.70 ± 0.130.73 ± 0.20
     Stress global MBF  (mL ⋅ g−1 ⋅ min−1)2.03 ± 0.382.00 ± 0.371.81 ± 0.40
    Posttreatment
     Global CFR3.10 ± 1.042.83 ± 0.552.69 ± 0.96
     Rest global MBF  (mL ⋅ g−1 ⋅ min−1)0.72 ± 0.200.71 ± 0.110.66 ± 0.17
     Stress global MBF  (mL ⋅ g−1 ⋅ min−1)2.09 ± 0.501.98 ± 0.411.73 ± 0.61
    • *Posttreatment study parameter minus baseline study parameter. spiro, spironolactone.

PreviousNext
Back to top
Diabetes: 64 (1)

In this Issue

January 2015, 64(1)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by Author
  • Masthead (PDF)
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mineralocorticoid Receptor Blockade Improves Coronary Microvascular Function in Individuals With Type 2 Diabetes
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mineralocorticoid Receptor Blockade Improves Coronary Microvascular Function in Individuals With Type 2 Diabetes
Rajesh Garg, Ajay D. Rao, Maria Baimas-George, Shelley Hurwitz, Courtney Foster, Ravi V. Shah, Michael Jerosch-Herold, Raymond Y. Kwong, Marcelo F. Di Carli, Gail K. Adler
Diabetes Jan 2015, 64 (1) 236-242; DOI: 10.2337/db14-0670

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Mineralocorticoid Receptor Blockade Improves Coronary Microvascular Function in Individuals With Type 2 Diabetes
Rajesh Garg, Ajay D. Rao, Maria Baimas-George, Shelley Hurwitz, Courtney Foster, Ravi V. Shah, Michael Jerosch-Herold, Raymond Y. Kwong, Marcelo F. Di Carli, Gail K. Adler
Diabetes Jan 2015, 64 (1) 236-242; DOI: 10.2337/db14-0670
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Research Design and Methods
    • Results
    • Discussion
    • Article Information
    • Footnotes
    • References
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Interphotoreceptor Retinol-Binding Protein Ameliorates Diabetes-Induced Retinal Dysfunction and Neurodegeneration Through Rhodopsin
  • Lung and Kidney ACE2 and TMPRSS2 in Renin-Angiotensin System Blocker–Treated Comorbid Diabetic Mice Mimicking Host Factors That Have Been Linked to Severe COVID-19
  • Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis
Show more Complications

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.