Adaptive β-Cell Neogenesis in the Adult Mouse in Response to Glucocorticoid-Induced Insulin Resistance
Abstract
Both type 1 and type 2 diabetes are characterized by deficient insulin secretion and decreased β-cell mass. Thus, regenerative strategies to increase β-cell mass need to be developed. To characterize mechanisms of β-cell plasticity, we studied a model of severe insulin resistance in the adult mouse and defined how β-cells adapt. Chronic corticosterone (CORT) treatment was given to adult mice and led to rapid insulin resistance and adaptive increased insulin secretion. Adaptive and massive increase of β-cell mass was observed during treatment up to 8 weeks. β-Cell mass increase was partially reversible upon treatment cessation and reinduced upon subsequent treatment. β-Cell neogenesis was suggested by an increased number of islets, mainly close to ducts, and increased Sox9 and Ngn3 mRNA levels in islets, but lineage-tracing experiments revealed that neoformed β-cells did not derive from Sox9- or Ngn3-expressing cells. CORT treatment after β-cell depletion partially restored β-cells. Finally, β-cell neogenesis was shown to be indirectly stimulated by CORT because serum from CORT-treated mice increased β-cell differentiation in in vitro cultures of pancreatic buds. Altogether, the results present a novel model of β-cell neogenesis in the adult mouse and identify the presence of neogenic factors in the serum of CORT-treated mice.
Footnotes
This article contains Supplementary Data online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db17-1314/-/DC1.
E.C. and A.B. are first co-authors.
G.G. and B.B. are last co-authors.
- Received October 31, 2017.
- Accepted October 11, 2018.
- © 2018 by the American Diabetes Association.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.