Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Pathophysiology

Claudin-5 Redistribution Induced by Inflammation Leads to Anti-VEGF–Resistant Diabetic Macular Edema

  1. Mitsuru Arima1,
  2. Shintaro Nakao1⇑,
  3. Muneo Yamaguchi1,
  4. Hao Feng1,
  5. Yuya Fujii1,
  6. Kensuke Shibata1,
  7. Iori Wada1,
  8. Yoshihiro Kaizu1,
  9. Hamid Ahmadieh2,
  10. Tatsuro Ishibashi1,
  11. Alan W. Stitt3 and
  12. Koh-Hei Sonoda1
  1. 1Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
  2. 2Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  3. 3Centre for Experimental Medicine, Queen’s University Belfast, Belfast, Northern Ireland
  1. Corresponding author: Shintaro Nakao, snakao{at}med.kyushu-u.ac.jp
Diabetes 2020 May; 69(5): 981-999. https://doi.org/10.2337/db19-1121
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Abstract

Approximately 40% of patients with diabetic macular edema (DME) are resistant to anti–vascular endothelial growth factor (VEGF) therapy (rDME). Here, we demonstrate that significant correlations between inflammatory cytokines and VEGF, as observed in naive DME, are lost in patients with rDME. VEGF overexpression in the mouse retina caused delayed inflammatory cytokine upregulation, monocyte/macrophage infiltration (CD11b+ Ly6C+ CCR2+ cells), macrophage/microglia activation (CD11b+ CD80+ cells), and blood-retinal barrier disruption due to claudin-5 redistribution, which did not recover with VEGF blockade alone. Phosphorylated protein analysis of VEGF-overexpressed retinas revealed rho-associated coiled-coil–containing protein kinase (ROCK) activation. Administration of ripasudil, a selective ROCK inhibitor, attenuated retinal inflammation and claudin-5 redistribution. Ripasudil also contributed to the stability of claudin-5 expression by both transcriptional enhancement and degradation suppression in inflammatory cytokine–stimulated endothelium. Notably, the anti-VEGF agent and the ROCK inhibitor were synergic in suppressing cytokine upregulation, monocyte/macrophage infiltration, macrophage/microglia activation, and claudin-5 redistribution. Furthermore, in vitro analysis confirmed that claudin-5 redistribution depends on ROCK2 but not on ROCK1. This synergistic effect was also confirmed in human rDME cases. Our results suggest that ROCK-mediated claudin-5 redistribution by inflammation is a key mechanism in the anti-VEGF resistance of DME.

Footnotes

  • This article contains Supplementary Data online at https://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db19-1121/-/DC1.

  • Received November 12, 2019.
  • Accepted February 26, 2020.
  • © 2020 by the American Diabetes Association
https://www.diabetesjournals.org/content/license

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

View Full Text
PreviousNext
Back to top
Diabetes: 69 (5)

In this Issue

May 2020, 69(5)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by Author
  • Masthead (PDF)
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Claudin-5 Redistribution Induced by Inflammation Leads to Anti-VEGF–Resistant Diabetic Macular Edema
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Claudin-5 Redistribution Induced by Inflammation Leads to Anti-VEGF–Resistant Diabetic Macular Edema
Mitsuru Arima, Shintaro Nakao, Muneo Yamaguchi, Hao Feng, Yuya Fujii, Kensuke Shibata, Iori Wada, Yoshihiro Kaizu, Hamid Ahmadieh, Tatsuro Ishibashi, Alan W. Stitt, Koh-Hei Sonoda
Diabetes May 2020, 69 (5) 981-999; DOI: 10.2337/db19-1121

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Claudin-5 Redistribution Induced by Inflammation Leads to Anti-VEGF–Resistant Diabetic Macular Edema
Mitsuru Arima, Shintaro Nakao, Muneo Yamaguchi, Hao Feng, Yuya Fujii, Kensuke Shibata, Iori Wada, Yoshihiro Kaizu, Hamid Ahmadieh, Tatsuro Ishibashi, Alan W. Stitt, Koh-Hei Sonoda
Diabetes May 2020, 69 (5) 981-999; DOI: 10.2337/db19-1121
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Research Design and Methods
    • Results
    • Discussion
    • Article Information
    • Footnotes
    • References
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A High-Fat Diet Attenuates AMPK α1 in Adipocytes to Induce Exosome Shedding and Nonalcoholic Fatty Liver Development In Vivo
  • Multinucleated Giant Cells in Adipose Tissue Are Specialized in Adipocyte Degradation
  • CEPT1-Mediated Phospholipogenesis Regulates Endothelial Cell Function and Ischemia-Induced Angiogenesis Through PPARα
Show more Pathophysiology

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.