Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Oral Presentations: Acute and Chronic Complications

329-OR: REDD1 Suppresses the Retinal Antioxidant Response to Diabetes by Destabilizing Nrf2

  1. WILLIAM P. MILLER,
  2. ALLYSON TORO,
  3. JOSEPH GIORDANO and
  4. MICHAEL D. DENNIS
  1. Hershey, PA
Diabetes 2020 Jun; 69(Supplement 1): -. https://doi.org/10.2337/db20-329-OR
Previous
  • Article
  • Info & Metrics
Loading

Abstract

Oxidative stress is a major contributor to the pathophysiology of diabetes. To combat oxidative stress, the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) promotes the expression of an array of antioxidant gene products. However, in both the retina of diabetic patients and in preclinical diabetes models, there is a failure to properly upregulate Nrf2 activity. We previously demonstrated that retinal REDD1 protein expression is enhanced by diabetes-induced hyperglycemia and necessary for both the rise in retinal reactive oxygen species and the development of visual dysfunction in diabetic mice. In the present study, we investigated the hypothesis that signaling events downstream of REDD1 act to limit the retinal Nrf2 antioxidant response to the diabetic metabolic environment. We found that REDD1 ablation not only enhanced retinal Nrf2 activity, but also prevented the suppressive effect of streptozotocin-induced diabetes as compared to wild type mice. Nuclear Nrf2 protein expression and activity were enhanced in REDD1 knockout human MIO-M1 retinal Müller cells in culture, independent of a change in Nrf2 mRNA abundance. REDD1 deletion prevented oxidative stress in response to hyperglycemic conditions, and this protective effect was absent upon Nrf2 knockdown. REDD1 suppressed Nrf2 stability independent of Keap1 by promoting GSK3-mediated nuclear exclusion and proteasomal degradation via the ubiquitin ligase adapter β transducin repeat containing protein (β-TrCP). In the retina of diabetic REDD1-deficient mice, enhanced GSK3 phosphorylation was associated with a decrease in oxidative stress as compared to diabetic wild type mice. Pharmacological inhibition was used to suppress GSK3 activity in both cells in culture and in the retina of diabetic mice. Remarkably, GSK3 inhibition prevented the suppressive effect on Nrf2. Overall these findings support therapeutic approaches targeting REDD1 to prevent diabetes-induced visual dysfunction.

Disclosure W.P. Miller: None. A. Toro: None. J. Giordano: None. M.D. Dennis: None.

Funding American Diabetes Association/Pathway to Stop Diabetes (1-14-INI-04 to M.D.D.); National Eye Institute (1F31EY031199-01)

  • © 2020 by the American Diabetes Association
http://www.diabetesjournals.org/content/license

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.

Previous
Back to top
Diabetes: 69 (Supplement 1)

In this Issue

June 2020, 69(Supplement 1)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
329-OR: REDD1 Suppresses the Retinal Antioxidant Response to Diabetes by Destabilizing Nrf2
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
329-OR: REDD1 Suppresses the Retinal Antioxidant Response to Diabetes by Destabilizing Nrf2
WILLIAM P. MILLER, ALLYSON TORO, JOSEPH GIORDANO, MICHAEL D. DENNIS
Diabetes Jun 2020, 69 (Supplement 1) 329-OR; DOI: 10.2337/db20-329-OR

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

329-OR: REDD1 Suppresses the Retinal Antioxidant Response to Diabetes by Destabilizing Nrf2
WILLIAM P. MILLER, ALLYSON TORO, JOSEPH GIORDANO, MICHAEL D. DENNIS
Diabetes Jun 2020, 69 (Supplement 1) 329-OR; DOI: 10.2337/db20-329-OR
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics

Related Articles

Cited By...

More in this TOC Section

Oral Presentations: Acute and Chronic Complications

  • 269-OR: Effect of Insulin Degludec on Frequency of Severe Hypoglycemia in Patients with Type 1 Diabetes Prone to Nocturnal Severe Hypoglycemia: The HypoDeg Trial
  • 309-OR: IGF-1 Receptors, Not Insulin Receptors, on Mesangial Cells Are Accelerating Mesangial Expansion and Albuminuria in Streptozotocin-Induced Diabetic Mice
Show more Oral Presentations: Acute and Chronic Complications

OR: Complications—Retinopathy

  • 328-OR: Retinopathy Screening in Adolescents with Type 1 Diabetes
  • 327-OR: Association of Retinol Binding Protein 3 with Retinal Neural Structure and Clinical Parameters in Diabetic Retinopathy
Show more OR: Complications—Retinopathy

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.