Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Pathophysiology

Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects

  1. Aurora Merovci1,
  2. Devjit Tripathy1,2,
  3. Xi Chen1,
  4. Ivan Valdez1,
  5. Muhammad Abdul-Ghani1,
  6. Carolina Solis-Herrera1,
  7. Amalia Gastaldelli1 and
  8. Ralph A. DeFronzo1,2⇑
  1. 1Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX
  2. 2Audie L. Murphy VA Hospital, South Texas Veterans Heath Care System, Foundation for Advancing Veterans’ Health Research, San Antonio, TX
  1. Corresponding author: Ralph A. DeFronzo, albarado{at}uthscsa.edu
  1. A.M. and D.T. contributed equally to the completion of the study.

Diabetes 2021 Jan; 70(1): 204-213. https://doi.org/10.2337/db20-0039
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading

Abstract

The aim of the current study was to evaluate the effect of sustained physiologic increase of ∼50 mg/dL in plasma glucose concentration on insulin secretion in normal glucose-tolerant (NGT) subjects. Twelve NGT subjects without family history of type 2 diabetes mellitus (T2DM; FH−) and 8 NGT with family history of T2DM (FH+) received an oral glucose tolerance test and two-step hyperglycemic clamp (100 and 300 mg/dL) followed by intravenous arginine bolus before and after 72-h glucose infusion. Fasting plasma glucose increased from 94 ± 2 to 142 ± 4 mg/dL for 72 h. First-phase insulin secretion (0–10 min) increased by 70%, while second-phase insulin secretion during the first (10–80 min) and second (90–160 min) hyperglycemic clamp steps increased by 3.8-fold and 1.9-fold, respectively, following 72 h of physiologic hyperglycemia. Insulin sensitivity during hyperglycemic clamp declined by ∼30% and ∼55% (both P < 0.05), respectively, during the first and second hyperglycemic clamp steps. Insulin secretion/insulin resistance (disposition) index declined by 60% (second clamp step) and by 62% following arginine (both P < 0.005) following 72-h glucose infusion. The effect of 72-h glucose infusion on insulin secretion and insulin sensitivity was similar in subjects with and without FH of T2DM. Following 72 h of physiologic hyperglycemia, metabolic clearance rate of insulin was markedly reduced (P < 0.01). These results demonstrate that sustained physiologic hyperglycemia for 72 h 1) increases absolute insulin secretion but impairs β-cell function, 2) causes insulin resistance, and 3) reduces metabolic clearance rate of insulin.

  • Received February 12, 2020.
  • Accepted October 6, 2020.
  • © 2020 by the American Diabetes Association
https://www.diabetesjournals.org/content/license

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

View Full Text

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Diabetes: 70 (1)

In this Issue

January 2021, 70(1)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by Author
  • Masthead (PDF)
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects
Aurora Merovci, Devjit Tripathy, Xi Chen, Ivan Valdez, Muhammad Abdul-Ghani, Carolina Solis-Herrera, Amalia Gastaldelli, Ralph A. DeFronzo
Diabetes Jan 2021, 70 (1) 204-213; DOI: 10.2337/db20-0039

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects
Aurora Merovci, Devjit Tripathy, Xi Chen, Ivan Valdez, Muhammad Abdul-Ghani, Carolina Solis-Herrera, Amalia Gastaldelli, Ralph A. DeFronzo
Diabetes Jan 2021, 70 (1) 204-213; DOI: 10.2337/db20-0039
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Research Design and Methods
    • Results
    • Discussion
    • Article Information
    • References
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CEPT1-Mediated Phospholipogenesis Regulates Endothelial Cell Function and Ischemia-Induced Angiogenesis Through PPARα
  • Podocyte EGFR Inhibits Autophagy Through Upregulation of Rubicon in Type 2 Diabetic Nephropathy
  • A High-Fat Diet Attenuates AMPK α1 in Adipocytes to Induce Exosome Shedding and Nonalcoholic Fatty Liver Development In Vivo
Show more Pathophysiology

Similar Articles

Subjects

  • Complications-Nephropathy-Clinical and Translational Research

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.