Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Complications

CD31+ Extracellular Vesicles From Patients With Type 2 Diabetes Shuttle a miRNA Signature Associated With Cardiovascular Complications

  1. Francesco Prattichizzo1⇑,
  2. Valeria De Nigris2,
  3. Jacopo Sabbatinelli3⇑,
  4. Angelica Giuliani3,
  5. Carlos Castaño2,4,
  6. Marcelina Párrizas2,4,
  7. Isabel Crespo5,
  8. Annalisa Grimaldi6,
  9. Nicolò Baranzini6,
  10. Rosangela Spiga7,
  11. Elettra Mancuso7,
  12. Maria Rita Rippo3,
  13. Antonio Domenico Procopio3,8,
  14. Anna Novials2,4,
  15. Anna Rita Bonfigli9,
  16. Silvia Garavelli10,
  17. Lucia La Sala1,
  18. Giuseppe Matarese10,11,
  19. Paola de Candia1,
  20. Fabiola Olivieri3,8 and
  21. Antonio Ceriello1
  1. 1IRCCS MultiMedica, Milan, Italy
  2. 2Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
  3. 3Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
  4. 4CIBERDEM, Barcelona, Spain
  5. 5Cytometry and Cell Sorting Facility, Centre Esther Koplowitz, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
  6. 6Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
  7. 7Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
  8. 8Centre of Clinical Pathology and Innovative Therapy, IRCCS - INRCA, Ancona, Italy
  9. 9Scientific Direction, IRCCS - INRCA, Ancona, Italy
  10. 10Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore,” Consiglio Nazionale delle Ricerche, Naples, Italy
  11. 11Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II,” Naples, Italy
  1. Corresponding authors: Francesco Prattichizzo, francesco.prattichizzo{at}multimedica.it, and Jacopo Sabbatinelli, j.sabbatinelli{at}pm.univpm.it
  1. F.P. and V.D.N. contributed equally to this work.

Diabetes 2021 Jan; 70(1): 240-254. https://doi.org/10.2337/db20-0199
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Abstract

Innovative biomarkers are needed to improve the management of patients with type 2 diabetes mellitus (T2DM). Blood circulating miRNAs have been proposed as a potential tool to detect T2DM complications, but the lack of tissue specificity, among other reasons, has hampered their translation to clinical settings. Extracellular vesicle (EV)-shuttled miRNAs have been proposed as an alternative approach. Here, we adapted an immunomagnetic bead–based method to isolate plasma CD31+ EVs to harvest vesicles deriving from tissues relevant for T2DM complications. Surface marker characterization showed that CD31+ EVs were also positive for a range of markers typical of both platelets and activated endothelial cells. After characterization, we quantified 11 candidate miRNAs associated with vascular performance and shuttled by CD31+ EVs in a large (n = 218) cross-sectional cohort of patients categorized as having T2DM without complications, having T2DM with complications, and control subjects. We found that 10 of the tested miRNAs are affected by T2DM, while the signature composed by miR-146a, -320a, -422a, and -451a efficiently identified T2DM patients with complications. Furthermore, another CD31+ EV-shuttled miRNA signature, i.e., miR-155, -320a, -342-3p, -376, and -422a, detected T2DM patients with a previous major adverse cardiovascular event. Many of these miRNAs significantly correlate with clinical variables held to play a key role in the development of complications. In addition, we show that CD31+ EVs from patients with T2DM are able to promote the expression of selected inflammatory mRNAs, i.e., CCL2, IL-1α, and TNFα, when administered to endothelial cells in vitro. Overall, these data suggest that the miRNA cargo of plasma CD31+ EVs is largely affected by T2DM and related complications, encouraging further research to explore the diagnostic potential and the functional role of these alterations.

Footnotes

  • This article contains supplementary material online at https://doi.org/10.2337/figshare.13102910.

  • Received February 27, 2020.
  • Accepted October 15, 2020.
  • © 2020 by the American Diabetes Association
https://www.diabetesjournals.org/content/license

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

View Full Text

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Diabetes: 70 (1)

In this Issue

January 2021, 70(1)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by Author
  • Masthead (PDF)
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
CD31+ Extracellular Vesicles From Patients With Type 2 Diabetes Shuttle a miRNA Signature Associated With Cardiovascular Complications
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
CD31+ Extracellular Vesicles From Patients With Type 2 Diabetes Shuttle a miRNA Signature Associated With Cardiovascular Complications
Francesco Prattichizzo, Valeria De Nigris, Jacopo Sabbatinelli, Angelica Giuliani, Carlos Castaño, Marcelina Párrizas, Isabel Crespo, Annalisa Grimaldi, Nicolò Baranzini, Rosangela Spiga, Elettra Mancuso, Maria Rita Rippo, Antonio Domenico Procopio, Anna Novials, Anna Rita Bonfigli, Silvia Garavelli, Lucia La Sala, Giuseppe Matarese, Paola de Candia, Fabiola Olivieri, Antonio Ceriello
Diabetes Jan 2021, 70 (1) 240-254; DOI: 10.2337/db20-0199

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

CD31+ Extracellular Vesicles From Patients With Type 2 Diabetes Shuttle a miRNA Signature Associated With Cardiovascular Complications
Francesco Prattichizzo, Valeria De Nigris, Jacopo Sabbatinelli, Angelica Giuliani, Carlos Castaño, Marcelina Párrizas, Isabel Crespo, Annalisa Grimaldi, Nicolò Baranzini, Rosangela Spiga, Elettra Mancuso, Maria Rita Rippo, Antonio Domenico Procopio, Anna Novials, Anna Rita Bonfigli, Silvia Garavelli, Lucia La Sala, Giuseppe Matarese, Paola de Candia, Fabiola Olivieri, Antonio Ceriello
Diabetes Jan 2021, 70 (1) 240-254; DOI: 10.2337/db20-0199
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Research Design and Methods
    • Results
    • Discussion
    • Article Information
    • Footnotes
    • References
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Interphotoreceptor Retinol-Binding Protein Ameliorates Diabetes-Induced Retinal Dysfunction and Neurodegeneration Through Rhodopsin
  • Lung and Kidney ACE2 and TMPRSS2 in Renin-Angiotensin System Blocker–Treated Comorbid Diabetic Mice Mimicking Host Factors That Have Been Linked to Severe COVID-19
  • Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis
Show more Complications

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.