Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Genetics/Genomes/Proteomics/Metabolomics

Polycystic Ovary Syndrome and Risk of Type 2 Diabetes, Coronary Heart Disease, and Stroke

  1. Tiantian Zhu,
  2. Jinrui Cui and
  3. Mark O. Goodarzi⇑
  1. Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
  1. Corresponding author: Mark O. Goodarzi, mark.goodarzi{at}cshs.org
Diabetes 2021 Feb; 70(2): 627-637. https://doi.org/10.2337/db20-0800
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Article Figures & Tables

Figures

  • Tables
  • Figure 1
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1

    Relationships among risk factors, PCOS, and cardiometabolic events suggested by MR. Each solid arrow represents a positive genetic correlation documented by MR, indicating possible causal relationships. The relationship between increased testosterone and PCOS applies only to women. These relationships may explain the epidemiologic associations among PCOS and CHD and diabetes. The dotted arrows represent the negative MR results of the current study. T, testosterone.

Tables

  • Figures
  • Table 1

    PCOS SNPs used to construct the main instrument variable in Europeans

    Chr:positionSNPEffect alleleOther alleleEAFβSENearest genePF statistic
    2:43561780rs7563201AG0.451−0.1080.017THADA3.68E−1039.50
    2:213391766rs2178575AG0.1510.1660.022ERBB43.34E−1457.66
    5:131813204rs13164856TC0.7290.1240.019IRF1/RAD501.45E−1040.95
    8:11623889rs804279AT0.2620.1280.018GATA4/NEIL23.76E−1248.09
    9:5440589rs10739076AC0.3080.1100.020PLGRKT2.51E−0831.01
    9:97723266rs7864171AG0.428−0.0930.017C9orf32.95E−0830.84
    9:126619233rs9696009AG0.0680.2020.031DENND1A7.96E−1142.19
    11:30226356rs11031005TC0.854−0.1590.022ARL14EP/FSHB8.66E−1351.03
    11:102043240rs11225154AG0.0940.1790.027YAP15.44E−1143.16
    11:113949232rs1784692TC0.8240.1440.023ZBTB161.88E−1040.49
    12:56477694rs2271194AT0.4160.0970.017ERBB3/RAB5B4.57E−0934.22
    12:75941042rs1795379TC0.240−0.1170.020KRR11.81E−0936.25
    16:52375777rs8043701AT0.815−0.1270.021TOX39.61E−1037.46
    2:49247832rs2349415TC0.3430.0760.017FSHR9.59E−0619.65
    • Chr, chromosome; EAF, effect allele frequency.

  • Table 2

    PCOS SNPs used to construct the main instrument variable in East Asians

    Chr:positionSNPEffect alleleOther alleleEAFβSENearest genePF statistic
    2:43638838rs13429458AC0.810.4010.040THADA1.73E−2399.75
    2:48978159rs13405728AG0.7540.3430.037LHCGR7.55E−2187.72
    2:49201612rs2268361CT0.5040.1390.020FSHR9.89E−1350.87
    2:49247832rs2349415TC0.1810.1740.025FSHR2.35E−1249.17
    9:97648587rs4385527GA0.7810.1740.030C9orf35.87E−0933.88
    9:97741336rs3802457GA0.9040.2610.035C9orf35.28E−1456.62
    9:126525212rs2479106GA0.2220.2930.033DENND1A8.12E−1978.47
    11:102070639rs1894116GA0.1940.2390.024YAP11.08E−2296.12
    12:56390636rs705702GA0.2450.2390.023RAB5B/SUOX8.64E−26110.25
    12:66224461rs2272046AC0.9070.3570.038HMGA21.95E−2190.4
    16:52347819rs4784165GT0.3250.1400.021TOX33.64E−1143.8
    19:7166109rs2059807GA0.3010.1310.023INSR1.09E−0832.67
    20:52447303rs6022786AG0.3390.1220.020SUMO1P11.83E−0936.15
    • Chr, chromosome; EAF, effect allele frequency.

  • Table 3

    Characteristics of the outcome data sources used for MR analyses

    TraitNo. of case subjectsNo. of control subjectsConsortiumPopulationYear
    Diabetes in Asian (all subjects)77,418356,122AGENAsian2020
     Female27,370135,055AGENAsian2020
     Male28,02789,312AGENAsian2020
    Diabetes in European (all subjects)74,124824,006DIAMANTEEuropean2018
     Female30,053434,336DIAMANTEEuropean2018
     Male41,846383,767DIAMANTEEuropean2018
    CHD122,733424,528UKBB plus CARDIoGRAMplusC4DMajority European2018
    Any stroke40,585406,111MEGASTROKEEuropean2018
     Any ischemic stroke34,217406,111MEGASTROKEEuropean2018
     Large artery stroke4,373406,111MEGASTROKEEuropean2018
     Cardioembolic stroke7,193406,111MEGASTROKEEuropean2018
     Small vessel stroke5,386406,111MEGASTROKEEuropean2018
  • Table 4

    Associations between genetically predicted PCOS and risk of type 2 diabetes, CHD, and stroke with use of the IVW method

    TraitIVWCochran Q statistic
    OR (95% CI)PTest statisticP
    Diabetes in Asian (all)0.98 (0.96–1.01)0.1323.480.02
     Female0.98 (0.95–1.02)0.3311.400.50
     Male0.99 (0.95–1.02)0.4514.450.27
    Diabetes in European (all)0.97 (0.92–1.01)0.1629.790.005
     Female0.95 (0.88–1.02)0.1629.380.006
     Male0.98 (0.93–1.03)0.4215.660.27
    CHD1.00 (0.96–1.04)0.8824.420.03
     Any stroke0.98 (0.93–1.02)0.3310.210.68
      Any ischemic stroke0.98 (0.93–1.03)0.408.260.83
       Large artery stroke0.88 (0.78–1.00)0.0612.160.51
       Cardioembolic stroke0.92 (0.83–1.02)0.1013.880.38
       Small vessel stroke1.10 (0.95–1.27)0.2118.590.14
  • Table 5

    Associations between genetically predicted PCOS and risk of type 2 diabetes, CHD, and stroke with use of MR-Egger and weighted median methods

    TraitMR-EggerWeighted median
    OR (95% CI)PInterceptPInterOR (95% CI)P
    Diabetes in Asian (all)0.96 (0.90–1.03)0.290.0050.580.99 (0.96–1.02)0.42
     Female0.96 (0.88–1.04)0.290.010.440.99 (0.94–1.03)0.53
     Male0.99 (0.90–1.09)0.83−0.0010.940.98 (0.93–1.02)0.34
    Diabetes in European (all)1.00 (0.81–1.24)1.00−0.0040.750.95 (0.91–1.01)0.08
     Female0.97 (0.70–1.35)0.87−0.0030.880.88 (0.82–0.96)0.003
     Male1.02 (0.82–1.25)0.88−0.0050.730.97 (0.91–1.04)0.40
    CHD0.91 (0.77–1.06)0.240.010.240.99 (0.95–1.04)0.76
     Any stroke1.06 (0.87–1.29)0.58−0.010.431.00 (0.94–1.07)0.90
      Any ischemic stroke1.04 (0.83–1.30)0.73−0.010.590.99 (0.92–1.06)0.72
       Large artery stroke1.02 (0.60–1.74)0.95−0.020.600.91 (0.77–1.08)0.29
       Cardioembolic stroke1.07 (0.69–1.66)0.77−0.020.500.94 (0.82–1.08)0.38
       Small vessel stroke0.88 (0.48–1.62)0.690.030.481.09 (0.92–1.29)0.33
    • PInter, intercept P value.

PreviousNext
Back to top
Diabetes: 70 (2)

In this Issue

February 2021, 70(2)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by Author
  • Masthead (PDF)
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Polycystic Ovary Syndrome and Risk of Type 2 Diabetes, Coronary Heart Disease, and Stroke
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Polycystic Ovary Syndrome and Risk of Type 2 Diabetes, Coronary Heart Disease, and Stroke
Tiantian Zhu, Jinrui Cui, Mark O. Goodarzi
Diabetes Feb 2021, 70 (2) 627-637; DOI: 10.2337/db20-0800

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Polycystic Ovary Syndrome and Risk of Type 2 Diabetes, Coronary Heart Disease, and Stroke
Tiantian Zhu, Jinrui Cui, Mark O. Goodarzi
Diabetes Feb 2021, 70 (2) 627-637; DOI: 10.2337/db20-0800
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Research Design and Methods
    • Results
    • Discussion
    • Article Information
    • Footnotes
    • References
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress
  • The First Genome-Wide Association Study for Type 2 Diabetes in Youth: The Progress in Diabetes Genetics in Youth (ProDiGY) Consortium
  • Low-Frequency Genetic Variant in the Hepatic Glucokinase Gene Is Associated With Type 2 Diabetes and Insulin Resistance in Chinese Population
Show more Genetics/Genomes/Proteomics/Metabolomics

Similar Articles

Subjects

  • Genetics-Type 2 Diabetes

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.