Insulin-Stimulated Protein Kinase C λ/ζ Activity Is Reduced in Skeletal Muscle of Humans With Obesity and Type 2 Diabetes

Reversal With Weight Reduction

Young-Bum Kim, Ko Kotani, Theodore P. Ciaraldi, Robert R. Henry, and Barbara B. Kahn

In humans with obesity or type 2 diabetes, insulin target tissues are resistant to many actions of insulin. The atypical protein kinase C (PKC) isosforms λ and ζ are downstream of phosphatidylinositol-3 kinase (PI3K) and are required for maximal insulin stimulation of glucose uptake. Phosphoinositide-dependent protein kinase-1 (PDK-1), also downstream of PI3K, mediates activation of atypical PKC isoforms and Akt. To determine whether impaired PKCλ/ζ or PDK-1 activation plays a role in the pathogenesis of insulin resistance, we measured the activities of PKCλ/ζ and PDK-1 in vastus lateralis muscle of lean, obese, and obese/type 2 diabetic humans. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic-euglycemic clamp. Obese subjects were also studied after weight loss on a very-low-calorie diet. Insulin-stimulated glucose disposal rate is reduced 26% in obese subjects and 62% in diabetic subjects (both comparisons P < 0.001). Insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation and PI3K activity are impaired 40–50% in diabetic subjects compared with lean or obese subjects. Insulin stimulates PKCλ/ζ activity ~2.3-fold in lean subjects; the increment above basal is reduced in diabetic subjects but is normal in obese/nonobese subjects, indicating impaired insulin action on PKCλ/ζ. Importantly, weight loss in obese subjects normalizes PKCλ/ζ activity and increases IRS-1 phosphorylation and PI3K activity. Insulin also stimulates PDK-1 activity approximately twofold with no impairment in obese or diabetic subjects. In contrast to our previous data on Akt, reduced insulin-stimulated PKCλ/ζ activity could play a role in the pathogenesis of insulin resistance in muscle of obese and type 2 diabetic subjects. Diabetes 52:1935–1942, 2003

Impaired insulin-stimulated glucose transport in muscle and adipose tissue is a major contributor to the pathogenesis of insulin-resistant states such as obesity and type 2 diabetes (1). Insulin stimulates glucose transport by activating a cascade of tyrosyl phosphorylation events, initiated by binding of insulin to its receptor (2,3). The phosphorylated insulin receptor binds to and activates insulin receptor substrates (IRSs), resulting in stimulation of critical downstream pathways such as phosphatidylinositol 3-kinase (PI3K). PI3K is necessary, albeit not sufficient, for insulin stimulation of glucose uptake (4–7). Insulin-stimulated PI3K activity is impaired in skeletal muscle of obese type 2 diabetic subjects (8,9) and nonobese type 2 diabetic subjects (10,11). However, activation of Akt, a serine/threonine kinase downstream of PI3K involved in some of the metabolic actions of insulin (12,13), is normal in these same obese type 2 diabetic subjects (8), although not when muscle from lean type 2 diabetic subjects is incubated with a very high insulin concentration (14). Hence, the pathways downstream of PI3K that are responsible for the impairment in insulin-stimulated glucose metabolism are unclear.

Studies suggest that the atypical protein kinase C (PKC) isoforms λ and ζ are downstream mediators of PI3K and Akt and that their activation is required for insulin stimulation of glucose uptake, which involves translocation of the major insulin-responsive glucose transporter GLUT4 from intracellular sites to the cell membrane (15–17). Overexpression of a dominant-negative mutant of PKCλ or PKCζ abrogates insulin-stimulated glucose transport and GLUT4 translocation in adipose (15,18) and muscle cells (16,19). Overexpression of constitutively active PKCλ in adipocytes (15) or wild-type PKCζ in muscle in vivo (20) enhances both basal and insulin-stimulated glucose transport. Furthermore, PKCλ and ζ appear to function interchangeably, since overexpression of wild-type PKCζ restores the inhibitory effects of a dominant-negative mutant of PKCζ on insulin-stimulated GLUT4 translocation and vice versa (21). The possibility that PKCλ/ζ could play an important role in insulin resistance in vivo is supported by studies showing impaired insulin-stimulated PKCλ/ζ activity in skeletal muscle and adipose tissue of nonobese type 2 diabetic Goto-Kakizaki (GK) rats (22,23) and normalization of PKCλ/ζ activity by the insulin-sensi-
RESEARCH DESIGN AND METHODS

For the initial study, 15 lean and 16 obese nondiabetic subjects and 21 obese subjects with type 2 diabetes participated. Nearly all subjects were male (Table 1) except for the three women in the diabetic group. There was no difference in the insulin action parameters when the three women were excluded from the analyses, so we included them. The experimental protocol was approved by the Committee on Human Investigation of the University of California, San Diego. Informed written consent was obtained after explanation of the protocol. All nondiabetic subjects had normal glucose tolerance (70 g oral glucose load) as defined by fasting glucose ≤7.0 mmol/L and 2-h glucose ≤7.8 mmol/L (35). Except for diabetes, the subjects were healthy and on no medications known to influence glucose metabolism. Up until several weeks before the study, the treatment of diabetic subjects was as follows: metformin for two subjects, metformin plus insulin for three, metformin plus sulfonylurea for five, insulin for one, insulin plus sulfonylurea and metformin for one, sulfonylurea for three, exercise and diet for three, and no therapy for three subjects. Hypoglycemic agents were withdrawn at least 2 weeks before studies were performed.

RESULTS

The mean age was similar in all groups (Table 1). BMI was increased in obese nondiabetic and obese type 2 diabetic subjects compared with lean subjects. BMI was not different between obese nondiabetic and diabetic subjects. HbA1c and fasting serum glucose were normal in obese nondiabetic subjects but elevated in type 2 diabetic subjects. Fasting plasma insulin levels tended to be increased in obese nondiabetic subjects and were 2.9-fold elevated in diabetic subjects compared with lean subjects (Table 1). Clamp insulin levels were the same in lean and obese nondiabetic subjects. Although they were reduced in diabetic subjects, the concentration was still in the maximally stimulating range. Fasting plasma FFA levels were normal in obese nondiabetic subjects but were elevated in diabetic subjects. GDR was reduced 26% in obese nondiabetic subjects compared with lean subjects, 62% in obese diabetic subjects compared with lean subjects, and 48% in

TABLE 1	Clinical and metabolic characteristics of lean, obese, and diabetic subjects		
Age (years)	Lean: 45 ± 5	Obese: 46 ± 3	Diabetic: 50 ± 2
BMI (kg/m²)	24.4 ± 0.6	33.4 ± 1.4	34.7 ± 1.1
HbA1c (%)	5.1 ± 0.2	5.2 ± 0.2	10.1 ± 1.2
Glucose (mmol/L)	4.8 ± 0.1	5.1 ± 0.1	9.4 ± 0.8
Insulin (pmol/L)	40 ± 10	86 ± 21	142 ± 22.8
Clamp insulin (pmol/L)	6,400 ± 600	6,108 ± 960	4,012 ± 6,063
Free fatty acids (mmol/L)	0.36 ± 0.06	0.53 ± 0.07	0.80 ± 0.10
GDR (mg · kg⁻¹ · min⁻¹)	13.2 ± 0.9	9.8 ± 0.4	5.9 ± 0.4

Data are means ± SD. The study comprised 15 lean (all male), 16 obese (all male), and 21 obese type 2 diabetic (18 male and 3 female) subjects. Glucose, insulin, and free fatty acids were measured after an overnight fast. *P < 0.01 vs. lean; †P < 0.001 vs. obese; ‡P < 0.01 vs. lean; §P < 0.05 vs. lean; ¶P < 0.05 vs. obese.

Weight loss protocol. Six obese subjects (BMI 30–45 kg/m²) (calculated as weight in kilograms divided by the height in meters squared) with normal glucose tolerance defined by oral glucose tolerance test (OGTT) criteria, who were weight-stable for at least 3 months before the Special Diagnostics and Treatment Unit for baseline characterization: OGTT, hyperinsulinemic-euglycemic clamp, and muscle biopsy. Subjects were then placed on a very-low-calorie diet (VLCD) of 600–800 calories/day for up to 24 weeks or until 10–15% of initial body weight was lost. Subjects were inpatients during the first 4 weeks of diet therapy and were then monitored at weekly visits. Once the weight loss goal was met, subjects were introduced to a weight-maintenance diet. Metabolic characterization studies were repeated after subjects were weight-stable at their new level for at least 2–3 weeks.

Euglycemic clamp. Subjects were admitted to the Special Diagnostic and Treatment Unit. After an overnight fast, they underwent a 3-h hyperinsulineemic (300 mU·m⁻²·min⁻¹) euglycemic (5.0–5.5 mmol/L) clamp (8). The glucose disposal rate (GDR) was determined during the last 30 min of the clamp. Percutaneous needle biopsies of vastus lateralis muscle were performed before insulin infusion and at the end of the clamp (8), and muscle tissue was immediately frozen in liquid nitrogen. Plasma glucose and insulin levels were determined before each biopsy.

Tyrosine phosphorylation of the insulin receptor and IRS-1. Muscle biopsy samples were prepared (8), and insulin receptor and IRS-1 phosphorylation were determined as described (36). IRS-1 phosphorylation in obese subjects before and after weight loss was determined using a polyclonal IRS-1 antibody (Santa Cruz Biotechnology, Santa Cruz, CA). Determination of PI3K activity. Muscle lysates (500 μg protein) were subjected to immunoprecipitation with a polyclonal IRS-1 antibody, and PI3K activity was determined as described (8).

Determination of PKCα and PDK-1 activity. Muscle lysates (200 μg protein) were subjected to immunoprecipitation with a polyclonal PKCα antibody (Santa Cruz Biotechnology, Santa Cruz, CA; recognizes both PKCα and -ζ) or a polyclonal PDK-1 antibody (Upstate Biotechnology, Lake Placid, NY) coupled to protein A-Sepharose beads (Sigma) or G-Sepharose beads (Amersham Pharmacia Biotechnology, Piscataway, NJ). Immune pellets were washed, and PKCα/ζ activity was determined (22). PKD-1 activity was determined according to the manufacturer’s instructions (Upstate Biotechnology). With this protocol the efficiency of immunoprecipitation of PKCα/ζ and PKD-1 is ∼80% (not shown).

Statistical analysis. Statistical analyses including correlation coefficients were performed using the Stat View program (Abacus Concepts, Berkeley, CA). Statistical significance was tested with ANOVA and paired Student’s t test when appropriate.
obese diabetic compared with obese nondiabetic subjects (Table 1). Thus, obese nondiabetic subjects were mildly insulin resistant, whereas diabetic subjects were more severely insulin resistant.

Insulin receptor and IRS-1 tyrosine phosphorylation. Insulin stimulated insulin receptor tyrosine phosphorylation 2.8- to 3.7-fold in muscle of all groups, with no impairment in obese nondiabetic or diabetic subjects (Fig. 1A). Insulin also stimulated IRS-1 tyrosine phosphorylation ~2.5-fold in lean and obese nondiabetic subjects. IRS-1 phosphorylation was decreased 41–48% in diabetic subjects compared with lean or obese nondiabetic subjects. The total amounts of insulin receptor and IRS-1 proteins were unaltered among the groups (Fig. 1A). These data confirm other previous findings (9–11).

PI3K activity. Insulin increased IRS-1-associated PI3K activity 5.7-fold in lean, 3.5-fold in obese nondiabetic, and only 2.1-fold in obese diabetic subjects (Fig. 1B). Insulin-stimulated IRS-1-associated PI3K activity tended to be lower in muscle from obese nondiabetic subjects, but this did not reach statistical significance. PI3K was reduced 51% in obese diabetic subjects compared with lean subjects and 37% compared with obese nondiabetic subjects. The insulin-stimulated increment in PI3K activity above basal was decreased 70% in diabetic compared with lean subjects and 60% in diabetic compared with obese nondiabetic subjects. This is most likely due to decreased IRS-1 tyrosine phosphorylation (Fig. 1A). These data are also consistent with the previous findings (9–11). However, we felt it was important to quantitate the degree of impairment in these proximal signaling steps in the same samples in which we measured PKCζ activity and PDK-1 activity.

PKCζ activity and protein. Basal activity of PKCζ was not different among the three groups (Fig. 2A). Insulin stimulated PKCζ activity 2.3-fold in muscle of lean subjects but only 1.6-fold in obese and 1.5-fold in diabetic

FIG. 1. Insulin receptor and IRS-1 tyrosine phosphorylation (A) and IRS-1–associated PI3K activity (B) in skeletal muscle of lean, obese nondiabetic, and obese diabetic subjects. All subjects underwent a 3-h hyperinsulinemic-euglycemic clamp, and biopsies of vastus lateralis muscle were performed before and at the end of the clamp. A: Muscle lysates (250 µg protein) were subjected to immunoprecipitation with an IRS-1 or insulin receptor antibody. The precipitated proteins were separated by SDS/PAGE on 4–12% gels and immunoblotted with an antiphosphotyrosine antibody. B: PI3K activity was measured in muscle lysates (500 µg) that were subjected to immunoprecipitation with an IRS-1 antibody. Results are means ± SE for 7–17 subjects per group. PI3K data from 16 of the 35 subjects were included in our previous study (8). *P < 0.01 vs. lean; **P < 0.05 vs. obese.

FIG. 2. PKCζ activity (A) and PKCζ protein amounts (B) in skeletal muscle of lean, obese nondiabetic, and obese diabetic subjects. Subjects underwent clamp and biopsies as in Fig. 1A: PKCζ activity was measured in muscle lysates (200 µg) that were subjected to immunoprecipitation with an antibody that recognizes both PKCA and PKCζ. The immunoprecipitated pellets were assayed for kinase activity using a PKCζ pseudosubstrate as substrate. Results are means ± SE for 7–19 subjects per group. *P < 0.01 vs. lean; #P < 0.05 vs. lean. We see the normal variation among human subjects with several obese nondiabetic and obese diabetic subjects who respond relatively well to insulin. However, three-quarters of these subjects have markedly reduced responses to insulin. We could not identify any metabolic characteristics that distinguished the few responders. B: Proteins in muscle lysates (50 µg) were separated by SDS/PAGE on 8% gels and transferred to nitrocellulose membranes. PKCζ was visualized by immunoblotting. Representative autoradiogram of PKCζ levels in muscle of six subjects; bars show densitometric quantitation of PKCζ protein levels in 7–19 subjects per group. The autoradiogram is representative of three different gels. *P < 0.01 vs. lean and obese nondiabetic.
the amounts of PKCα/ζ protein and insulin-stimulated GDR in lean subjects ($r = 0.53$, $P < 0.002$).

PDK-1 activity and protein. Insulin increased PDK-1 activity in muscle of nearly every subject. Neither basal nor insulin-stimulated PDK-1 activity was different among the three groups (Fig. 3A). In addition, the insulin-stimulated increment above basal was unchanged with obesity or diabetes. There was also no difference in the amount of PDK-1 protein in muscle among the groups (Fig. 3B).

PKCα, PKCε, and PKCθ protein levels. To determine the specificity of the effect to decrease PKCα/ζ in muscle of obese diabetic subjects, we measured protein levels for specific PKC isoforms in the same samples. PKCα, PKCε, and PKCθ protein amounts were not altered by obesity or diabetes (Fig. 4). PKCα is the human homologue of the mouse PKCα; these proteins are 97% homologous (38,39). The total amount of PKCα was not decreased in diabetic subjects (Fig. 4), whereas immunoreactivity with the antibody that recognizes PKCα and -ζ showed a 43% decrease (Fig. 2B). Transfection studies in COS-7 cells showed equal affinity of this latter antibody for PCKα and PKCζ (not shown). Therefore, these data imply that PKCζ is specifically reduced in muscle of diabetic subjects.

TABLE 2

<table>
<thead>
<tr>
<th>Clinical and metabolic characteristics of obese subjects before and after a VLCD treatment</th>
<th>VLCD</th>
<th>Pretreatment</th>
<th>Posttreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>45 ± 3</td>
<td>45 ± 3</td>
<td></td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>95.0 ± 6.3</td>
<td>86.7 ± 6.0*</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>34.5 ± 1.7</td>
<td>31.8 ± 2.3*</td>
<td></td>
</tr>
<tr>
<td>Skinfold thickness (mm)</td>
<td>206 ± 15</td>
<td>179 ± 13$^+$</td>
<td></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.5 ± 0.2</td>
<td>5.4 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>5.8 ± 0.1</td>
<td>5.0 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>Insulin (pmol/l)</td>
<td>96.0 ± 13.4</td>
<td>84 ± 7.8</td>
<td></td>
</tr>
<tr>
<td>Clamp insulin (pmol/l)</td>
<td>6,931 ± 726</td>
<td>5,998 ± 693</td>
<td></td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>183 ± 51</td>
<td>115 ± 20</td>
<td></td>
</tr>
<tr>
<td>Free fatty acid (mmol/l)</td>
<td>0.53 ± 0.08</td>
<td>0.52 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>GDR (mg · kg⁻¹ · min⁻¹)</td>
<td>8.2 ± 0.7</td>
<td>10.2 ± 1.3$^+$</td>
<td></td>
</tr>
</tbody>
</table>

Data are means ± SD. Glucose, insulin, free fatty acid, and triglycerides were measured after an overnight fast. Skinfold thickness = abdominal + subscapular + suprailiac + chest. *P < 0.01 vs. pretreatment; $^+$P < 0.05 vs. pretreatment.
VLCD treatment. Only obese nondiabetic subjects were treated with VLCD. Subjects lost 4.3–14.4 kg. After 24 weeks of VLCD treatment, body weight, BMI, and skinfold thickness were decreased ($P < 0.01$), but HbA1c, glucose, insulin, clamp insulin, and free fatty acid concentrations were unaltered (Table 2). Triglyceride concentrations tended to be reduced and GDR increased by 24% after VLCD treatment ($P < 0.05$) (Table 2).

FIG. 5. IRS-1 tyrosine phosphorylation (A) and IRS-1–associated PI3K activity (B) in skeletal muscle of obese subjects before and after a VLCD treatment. Subjects underwent clamp and biopsies as in Fig. 1. A: Proteins in muscle lysates (50 μg) were separated by SDS/PAGE on 7.5% gels and transferred to nitrocellulose membranes. IRS-1 was visualized by immunoblotting with phosphospecific IRS-1 or total IRS-1 antibody. Representative results for two subjects pre- and postdiet are shown. B: PI3K activity was measured as in Fig. 1A. Results are means ± SE for six subjects per group. *$P < 0.05$ vs. pretreatment for insulin-stimulated condition.

DISCUSSION

Because PI3K is important for insulin action to maintain glucose homeostasis (2,3) and because activation of PI3K is defective in obese (8,9) and nonobese type 2 diabetic humans (10,11), elucidation of the potential downstream mediators of PI3K that contribute to the insulin resistance of obesity and type 2 diabetes is of great interest. While recent studies in knockout mice indicate that Akt2 is important for the metabolic effects of insulin at least in the liver, it is not clear whether the mild defect in skeletal muscle is directly due to the absence of Akt2 in muscle or is secondary to the insulin-resistant state (13). Furthermore, we found no impairment in insulin-stimulated Akt1, Akt2, or Akt3 activation in skeletal muscle of obese nondiabetic or obese diabetic humans despite decreased PI3K activation in diabetic humans (8). However, a study in muscle of lean type 2 diabetic subjects incubated with very high insulin concentrations showed decreased Akt activation (14). In the current study we investigated the potential role of the atypical PKC isoforms, PKCα/ζ, and of PDK-1, which are also downstream targets of PI3K.

Our data are the first to demonstrate that in vivo insulin administration in humans activates PKCα/ζ and PDK-1 in skeletal muscle. Importantly, insulin-stimulated PKCα/ζ...
activity is reduced in muscle of obese nondiabetic and obese diabetic subjects. This contrasts with our previous findings that Akt activation is normal in obese and diabetic subjects with similar metabolic characteristics (8). Thus, although IRS-1–associated PKC activity is reduced in diabetic subjects, not all downstream pathways are similarly affected. Consistent with our current results in humans, several studies in insulin-resistant rodent models including GK diabetic rats (22), high-fat–fed rats (40), free fatty acid–infused rats (41), and Zucker obese rats (Y.-B.K., B.B.K., unpublished data) and in obese diabetic monkeys (25) also show decreased insulin-stimulated PKC\(\eta\) activity in skeletal muscle. Taken together, these data suggest that reduced insulin-stimulated atypical PKC activity may play an important role in insulin resistance in vivo. Importantly, the impaired PKC\(\eta\) activation in obese humans is reversed with weight reduction. This, combined with the fact that rosiglitazone treatment of diabetic individuals. This combined with the impaired PKC\(\eta\) activity in obese and diabetic subjects suggests that PKC\(\eta\) activation can be regulated independent of PDK-1. Possibly, a defect in activation of another PDK isoform might explain the decrease in PKC\(\eta\) activity or altered subcellular localization of PDK-1 could modify PKC\(\eta\) activation. Although recent studies suggest that PDK-1 activity may be important for insulin stimulation of glucose transport and GLUT4 translocation in adipocytes and muscle cells (32–34), our data suggest that PDK-1 activation is not involved in the pathogenesis of insulin resistance in obesity and type 2 diabetes in humans.

In summary, in vivo administration of insulin in humans stimulates PKC\(\eta\) and PDK-1 activity. In insulin-resistant obese subjects with or without type 2 diabetes and with the characteristic impairments in glucose disposal in skeletal muscle, insulin-stimulated PKC\(\eta\) activity is reduced. Whereas PKC\(\eta\) protein content is normal in obese nondiabetic subjects, it is reduced in diabetic subjects. However, this cannot fully account for the defect in PKC\(\eta\) activity in diabetic subjects, and an impairment in insulin action on PKC\(\eta\) appears to also be present. This impairment can be reversed in obese subjects treated with a VLD. Thus, reduced PKC\(\eta\) activity due to impaired activation and/or decreased expression may be an important factor in insulin resistance in muscle of obese nondiabetic and obese type 2 diabetic humans. Targeting PKC\(\eta\) itself could potentially have side effects, since atypical PKCs mediate other biologic processes such as cell growth and proliferation (52–54). However, the emergence of PKC\(\eta\) as a potentially important step in the pathogenesis of insulin resistance could lead to new treatment approaches for obesity and type 2 diabetes.

Acknowledgments

This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIH DK-43051), the American Diabetes Association, the Medical Research Service, the Department of Veterans Affairs and VA San Diego Healthcare System, and the General Clinical Research Branch, Division of Research Resources (NIH MO1 RR-00827).
REFERENCES

