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Downregulation of EGF Receptor Signaling in Pancreatic
Islets Causes Diabetes Due to Impaired Postnatal �-Cell
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Epidermal growth factor receptor (EGF-R) signaling is

essential for proper fetal development and growth of pan-

creatic islets, and there is also evidence for its involvement

in �-cell signal transduction in the adult. To study the

functional roles of EGF-R in �-cell physiology in postnatal

life, we have generated transgenic mice that carry a mu-

tated EGF-R under the pancreatic duodenal homeobox-1

promoter (E1-DN mice). The transgene was expressed in

islet �- and �-cells but not in �-cells, as expected, and it

resulted in an �40% reduction in pancreatic EGF-R, extra-

cellular signal–related kinase, and Akt phosphorylation.

Homozygous E1-DN mice were overtly diabetic after the

age of 2 weeks. The hyperglycemia was more pronounced in

male than in female mice. The relative �-cell surface area

of E1-DN mice was highly reduced at the age of 2 months,

while �-cell surface area was not changed. This defect was

essentially postnatal, since the differences in �-cell area of

newborn mice were much smaller. An apparent explanation

for this is impaired postnatal �-cell proliferation; the

normal surge of �-cell proliferation during 2 weeks after

birth was totally abolished in the transgenic mice. Het-

erozygous E1-DN mice were glucose intolerant in intraperi-

toneal glucose tests. This was associated with a reduced

insulin response. However, downregulation of EGF-R sig-

naling had no influence on the insulinotropic effect of

glucagon-like peptide-1 analog exendin-4. In summary, our

results show that even a modest attenuation of EGF-R

signaling leads to a severe defect in postnatal growth of the

�-cells, which leads to the development of diabetes.
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T
he pancreatic �-cell is the key player of the
glucoregulatory machinery. It senses changes in
blood glucose levels and immediately adjusts the
release of insulin accordingly. Gene targeting

experiments have revealed transcriptional networks re-
quired for �-cell differentiation (1,2). Achievement and
maintenance of the correct �-cell mass is a crucial issue
that is controlled at all stages of development. In the
embryonic pancreas, this is controlled by an interplay
between growth factors, such as fibroblast growth fac-
tor-10 (3), provided by the mesenchyme, and notch signal-
ing between the epithelial cells to regulate the expression
of the proendocrine transcription factor neurogenin-3
(4,5). Epidermal growth factor receptor (EGF-R) stimula-
tion also promotes embryonic pancreatic epithelial prolif-
eration and suppresses endocrine differentiation (6). The
last days of gestation and the first postnatal weeks in the
mouse are characterized by a dramatic growth and remod-
eling of the pancreatic islets. The �-cell mass increases by
fourfold within 2 weeks, and this period is crucial for the
determination of the functional �-cell mass for the remain-
ing lifetime (7,8). The same is true in humans, where the
major �-cell expansion occurs during the last third of
gestation. The growth factors that are responsible in vivo
for the control of this critical phase of �-cell expansion are
poorly understood.

EGF-R is a tyrosine kinase receptor (9) belonging to the
erbB gene family (EGF-R/erbB1, neu/erbB2, erbB3, and
erbB4) (10,11). Binding of EGF family growth factors leads
to EGF-R autophosphorylation and activation of down-
stream extracellular signal–related protein kinase (ERK)
and phosphatidylinositol 3-kinase signaling pathways.
EGF-R has been associated with cell proliferation and
differentiation and is implicated in the development of
organs undergoing branching morphogenesis. All erbBs
are expressed in the developing pancreas in an overlap-
ping manner (12,13). We previously have shown, using an
EGF-R–deficient mouse model, that EGF-R signaling is
essential for proper pancreatic development (14). In the
absence of EGF-R, the nascent islet cells have a migration
defect and the development of �-cells occurs at a later
stage in EGF-R�/� mice than in wild-type littermates.
Moreover, we showed that ligands of the EGF-R/erbB-1
and erbB-4 receptors regulate the lineage determination of
islet cells during pancreatic development. Particularily,
betacellulin (BTC), acting through EGF-R/erbB-1, is impor-
tant for the differentiation of �-cells (12).
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The EGF-R�/� mice do not survive beyond the perinatal
period. To further clarify the role of EGF-R signaling in
postnatal growth and function of the �-cells, we have
generated transgenic mice that express kinase-negative
EGF-R under the pancreatic duodenal homeobox-1
(pdx-1) promoter. Using this mouse model, we show that
an intact EGF-R signaling pathway is required for the
development of a sufficient and functional �-cell mass and
that even a partial inactivation of EGF-R function in the
�-cells leads to diabetes.

RESEARCH DESIGN AND METHODS

Generation of pdx-1–EGF-R dominant-negative mice (E1-DN). The
E1-DN transgene (Fig. 2A) consists of the mouse pdx-1 promoter (a kind gift
from Dr. Pedro Herrera, University of Geneva), followed by a rabbit �-globin
second intron (15), the human kinase–deficient EGF-R cDNA (CD533;
Schlessinger) with a myc-tag (GEQKLISEEDLN), and a growth hormone
polyA-tail (16). The EGF-R deletion mutant previously has been shown to
function effectively as a dominant-negative manner in mice (17). The trans-
gene was injected into pronuclei, and eventually two transgenic mouse lines
were obtained. The transgenic animals were genotyped by Southern blot or
dot blot analysis (16). The study protocol was approved by the animal ethics
committee of the University of Helsinki. Wild-type controls were derived from
nonrelated litters to exclude the effect of intrauterine hyperglycemia.
Blood glucose measurements and in vivo testing of glucose tolerance,

insulin secretion, and insulin sensitivity. Random blood glucose values
were measured from wild-type (n � 4–8), E1-DN heterozygous (n � 6–30),
and E1-DN homozygous (n � 15–60) mice at various ages from tail veins using
a OneTouch Ultra glucometer (Lifescan). The intraperitoneal glucose toler-
ance test was done on 3- to 8-month-old mice (n � 12 for the transgenic and
n � 12 for the control group) by intraperitoneally injecting glucose (1 mg/g
body wt). Blood samples were collected at 0, 30, 60, and 120 min, and glucose
(OneTouch) and insulin (Ultrasensitive Mouse Insulin ELISA; Mercodia,
Uppsala, Sweden) concentrations were measured. Exendin-4 (100 ng/mouse;
Bachem) was intraperitoneally injected immediately before glucose loading
on the contralateral side. To exclude differences in insulin tolerance, 0.75 IU/g

insulin was intraperitoneally injected to wild-type and E1-DN mice (twice for
n � 3 for both groups) and blood glucose measured at 0, 15, 30, and 60 min.
All in vivo experiments were done on homozygous or heterozygous male mice,
as males had the most pronounced phenotype. The results are expressed as
the mean of different experiments � SE.
Histological and morphometrical analysis. Newborn and 2- to 8-month-old
E1-DN transgenic and wild-type mice were killed by cervical dislocation, and
the pancreata were dissected, weighed, and fixed overnight in 4% paraformal-
dehyde or Bouin’s fixative. The tissues were processed into paraffin using
routine procedures. For morphometrical analysis, the pancreata were serially
sectioned through, and five 3 �m sections per every 100 �m were collected,
deparaffinized, stained with insulin or glucagon antibodies, counterstained with
hematoxylin, and morphometrically analyzed directly under light microscope
using Image-Pro Plus 4.5 (version 0.19) software as previously described (14).
Total pancreatic insulin content. Pancreata were weighed and then
homogenized in acid ethanol (75% ethanol, 23.5% distilled water, and 1.5%
concentrated HCl) at 10 ml/g of tissue. After overnight incubation at 4°C, the
suspensions were centrifuged at 2,000g for 10 min and the supernatants were
collected and analyzed for insulin content using RIA (DPC, Los Angeles, CA).
Immunohistochemistry. Paraffin sections from wild-type and E1-DN trans-
genic mice were stained as described (12) with the following antibodies:
amylin (mouse anti-human; Labvision, Fremont, CA), insulin (guinea pig
anti-swine; DakoCytomation, Glostrup, Denmark), glucagon (rabbit anti-
human; DakoCytomation), somatostatin (rabbit anti-human; DakoCytoma-
tion), PP (rabbit anti-human; DakoCytomation), EGF-R (E3138 [Sigma] and
no. 100-401-149 [Rockland] for both mouse and human EGF-R and Ab-10
[Neomarkers, Fremont, CA] for human EGF-R), phospho-specific EGF-R
(P845-EGF-R; Biosources), pdx-1 (kind gift from Dr. Christopher Wright,
Vanderbuilt University, Nashville, TN), myc (9E10.3 mouse anti-human; Neo-
markers/Labvision), and GLUT-2 (no. sc-7580, goat anti-human; Santa Cruz
Biotechnology, Santa Cruz, CA). The immunoreactions were visualized under
either light or fluorescence microscope and digitally photographed.
Cell proliferation and apoptosis. Paraformaldehyde-fixed pancreatic sec-
tions from newborn, postnatal day 7 (D7), and day 14 (D14) wild-type and
E1-DN pancreata were double stained with antibodies to insulin (DakoCyto-
mation) and either Ki67 (Novocastra, Newcastle upon Tyne, U.K.) or cleaved
caspase 3 (Cell Signaling). Briefly, paraffin sections were microwave treated in
10 mmol/l citrate or in 1 mmol/l EDTA for 15 min. Nonspecific binding was

FIG. 1. Expression of EGF-R in mouse pancreas. Newborn (A) and 3-month-old (B) mouse pancreatic islets stain strongly for EGF-R
immunoreactivity (red). To detect activated EGF-R, we used an antibody for phosphorylated EGF-R and analyzed mouse islets in animals injected
with PBS or EGF (10 �g/g body wt). Without EGF stimulation, EGF-R is only weakly phophorylated in the islets (C; arrows). Ten minutes after
EGF injection, strong immunoreactivity (red) is seen in islets and only faintly in vessel walls and ducts.

EGF-R AND �-CELL GROWTH

3300 DIABETES, VOL. 55, DECEMBER 2006



blocked by preincubation in 4% normal donkey serum followed by incubation of
primary antibodies overnight at 4°C. As secondary antibodies we used, TRITC
(tetramethylrhodamine isothiocyanate) donkey anti–guinea pig and FITC (fluo-
rescein isothiocyanate) donkey anti-rabbit (Jackson Immunoresearch).
Immunoprecipitation and Western analysis. Pancreata, livers, or isolated
islets were homogenized in lysis buffer (25 mmol/l HEPES, pH 7.4, 1% Triton
X-100, 10% glyserol, 0.5 mmol/l EGTA, 10 mg/ml approtinin, 10 mg/ml
leupeptin, 1 mmol/l phenylmethylsulfonyl fluoride, and 2 mmol/l Na-
orthovanadate) and protein concentration determined by the Bio-Rad DC

Protein Assay (Bio-Rad). Lysates (50 �g protein) were run into 10% SDS-PAGE
and analyzed by Western analysis with antibodies to EGF-R, phospho–EGF-R,
myc, phosphor-ERK (Promega), phospho-Akt (no. 9271; Cell Signaling), and
tubulin (no. T5168; Sigma) as described (12).
In vivo phosphorylation assay. Wild-type and E1-DN transgenic mice (2–4
months old) were intraperitoneally injected with recombinant EGF (1–10 �g/g
body wt; R&D Systems) and killed after 10 min. The pancreata were dissected,
split in half, and either snap frozen in liquid nitrogen for EGF-R phosphory-
lation analyses by Western analysis or fixed in 4% paraformaldehyde for

FIG. 2. Structure and expression of the pdx1–EGF-R dominant-negative (E1-DN) transgene. A: The E1-DN transgene consists of the mouse pdx-1
promoter driving the expression of a kinase-negative human EGF-R and a myc-tag. B: Expression of the E1-DN transgene was analyzed in
wild-type (wt) and E1-DN islets by RT-PCR using primers for both the endogenous and mutated EGF-R. E1-DN islets abundantly express the
truncated EGF-R (304 bp). C: EGF (10 �g/g body wt) was injected intraperitoneally into wild-type (wt) and E1-DN mice. Protein lysates from
pancreas and liver were subjected to Western analysis. Upon EGF stimulation, EGF-R, mitogen-activated protein kinase (ERK), and Akt signaling
pathways are phosphorylated and activated in the wild-type pancreas but only weakly in the E1-DN pancreas. Level of E1-DN protein expression
is shown is by anti-myc Western analysis. The E1-DN transgene is present and active only in pancreas as shown by equally strong EGF-R
phosphorylation between wild-type and E1-DN liver. Tubulin protein expression is shown as a loading control. D: E1-DN transgene is expressed
abundantly in the islets as shown by transgene-specific immunostaining using anti-hEGFR or anti-myc (upper row). Anti–hEGF-R does not stain
anything in the wild-type pancreas. E1-DN transgene (green) is located mainly in the cell membrane (arrow) with some cytoplasmic expression
(lower row). It is expressed in the �-cells and in some �-cells as shown by hEGF/insulin (red) and hEGF-R/somatostatin (red) double staining
(yellow cells). No E1-DN transgene can be detected in �-cells by hEGF-R/glucagon double staining (only green or red cells). Magnification �40.
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immunohistochemistry. Liver was used a positive control tissue for EGF-
induced phosphorylation (18).
Islet isolation and in vitro insulin release. Islets from 3- to 6-month-old
wild-type and E1-DN transgenic mice were isolated by standard collagenase
digestion (Collagenase P; Roche Diagnostics, Mannheim, Germany) and
subsequently handpicked under a stereomicroscope. After an overnight
culture in RPMI-1640 (Life Technologies) medium with 10% FCS, the islets
were first preincubated for 60 min at 37°C in Krebs-Ringer bicarbonate buffer
with 1.7 mmol/l glucose. Groups of 5–10 islets per well were then incubated in
a 24-well plate in 300 �l of the low glucose (1.7 mmol/l) Krebs-Ringer
bicarbonate buffer for the 1st h and in 11.2 mmol/l glucose with or without 10
nmol/l exendin-4 for the 2nd h. Insulin was measured from the supernatants by
radioimmunoassay (DPC, Los Angeles, CA). Intracellular insulin content of
the islets was measured after sonication in 300 �l distilled deionized water
and overnight extraction in acid ethanol.
RT-PCR. RNA from wild-type and E1-DN islets was isolated using the
NucleoSpinRNAII kit according to the manufacturer’s instructions (Macherey-
Nagel, Dureer, Germany). Reverse transcription and PCR were done as
previously described (12). The upstream primer was the same for both mouse

EGF-R and the transgene (5�-cca gtg tgc cca cta cat tg-3�), while the
downstream primers were separate (for mouse EGF-R 5�-ctg ggt gtg aga ggt
tcc ac-3� and for the E1-DN transgene myc-specific 5�-cct cgg ata tca gct tct
gc-3�). These primers created a 351-bp fragment for the mouse EGF-R and a
304-bp fragment for the E1-DN transgene.
Statistical analysis. All data are expressed as means � SE, unless otherwise
indicated. Significance of the differences between two groups was tested with
Student’s unpaired t test. Differences between more than two groups were
tested using the one-way ANOVA and Fisher’s least significant differences test.
P 	 0.05 was used as the limit for statistical significance.

RESULTS

Expression of EGF-R in mouse pancreas. We previ-
ously have shown that targeted inactivation of EGF-R
leads to streak-like islets and a poorly branched pancreas.
Normally, EGF-R is strongly expressed in mouse islets at
all postnatal ages (Fig. 1A and B for newborn and 3-month-
old islets). Without EGF stimulation, EGF-R is phosphor-
ylated only at a low level as shown by immunostaining
with anti–P845-EGF-R (Fig. 1C). However, after a subcu-
taneous EGF injection, phosphorylated EGF-R is abun-
dantly expressed in the islets (Fig. 1D) and only weakly in
exocrine pancreas.
Generation of pdx-1–EGF-R dominant-negative (E1-
DN) mice. The pdx-1 promoter was used to drive the
expression of a kinase-negative human EGF-R into devel-
oping �- and �-cells (Fig. 2A). For transgene expression
studies, a myc-tag was added to the cytoplasmic tail of the
receptor. The E1-DN transgenic mice were generated
through pronucleus injections and routine transgenic ani-
mal techniques. Two founder lines were bred and analyzed
for transgene expression and phenotype. Heterozygotes
and homozygotes were identified by Southern and dot blot
analysis and by PCR. As shown, the E1-DN mRNA is
readily detectable from transgenic islets (Fig. 2B). The
effect of the transgene on the endogenous EGF-R signaling
was studied by injecting wild-type and E1-DN mice with
EGF (1–10 �g/g body wt i.p.). In the homozygous E1-DN
mice, autophosphorylation of the pancreatic EGF-R was
37% of the wild-type level (Fig. 1C), and phosphorylation
of the downstream signaling components ERK1/2 and Akt
were 43% of the level seen in the wild-type pancreata (Fig.
2C). As expected, the hepatic EGF-R of the E1-DN animals
was phosphorylated similarly to that in the wild-type mice.

FIG. 3. E1-DN mice are diabetic. Random blood glucose values were
measured from wild-type (WT; n � 4–8) and E1-DN mice (n � 6–30 for
heterozygous [HEZ] and n � 15–60 for homozygous [HOZ]) at indicated
ages. The E1-DN mice are clearly hyperglycemic from D7 onwards.
Blood glucose of the homozygous E1-DN mice rises very steeply and
remains high. Heterozygous E1-DN mice present with moderate hyper-
glycemia showing a clear gene-dose effect. Blood glucose of male mice
is consistently higher than female mice.

FIG. 4. Characterization of the E1-DN �-cells. A–D: Insulin immunohistochemistry (red) shows a patchy staining pattern in the E1-DN pancreata
from 2- and 12-month-old heterozygous (hez) and homozygous (hoz) mice. �-Cells stain for insulin in a varying intensity, and there are many
insulin-negative cells in the islet mantle. The staining pattern for amylin correlates to insulin-like immunoreactivity (E and F; red). Original
magnification �40.
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Cellular location of the E1-DN protein was studied by
immunohistochemistry using transgene-specific antibod-
ies (anti-myc and anti-human EGF-R, which does not
cross-react with mouse EGF-R). As shown (Fig. 2D), the
E1-DN �- and also some �-cells displayed a strong mem-
branous and also a cytoplasmic staining pattern for the
transgene, whereas 
-cells did not express the transgene.
There was some variability in the intensity of the trans-
gene-specific immunoractivity between individual �-cells.
The expression pattern remained similar at all ages stud-
ied (newborn and 2- and 8-month-old mice; data not
shown). To conclude, the kinase-negative EGF-R is ex-
pressed in the �- and �-cells and inhibits endogenous
EGF-R function.
E1-DN mice are hyperglycemic. The transgenic E1-DN
mice were fertile, and their weights did not differ from the
wild-type animals at any time point (data not shown).
However, although normoglycemic at birth, they were
increasingly hyperglycemic since the age of 7 days (Fig. 3).
Homozygous E1-DN mice were overtly diabetic from the
age of 2 weeks. The mean fed blood glucose of male mice
peaked at 27 mmol/l at the age of 1 month. After the peak,
it later stabilized at �15 mmol/l but remained significantly
elevated compared with wild-type mice (at 8 months: 13.5
vs. 8.4 mmol/l, P 	 0.01). Female homozygous mice
consistently were less hyperglycemic than the homozy-

gous males, but they also remained clearly diabetic. Also,
heterozygous male mice were constantly slightly hypergly-
cemic (mean random blood glucose 11.1 vs. 8.8 mmol/l in
male 1- to 6-month-old heterozygous versus wild-type
mice; P 	 0.05). These results suggest a clear gene-dose
effect and sexual dimorphism on the glucoregulatory role
for EGF-R signaling in the �-cell.

The age-related gradual decrease in blood glucose levels
seen in all E1-DN mice was not due to a loss of transgene
expression, because the islets of the 7- to 8-month-old
transgenic animals were still strongly transgene positive
when stained for hEGF-R or c-Myc immunoreactivity (data
not shown). Nor did it appear to be due to increased
insulin sensitivity, since there were no differences in the
hypoglycemic responses of wild-type and E1-DN animals
in an insulin tolerance test (data not shown).
Islet structure, �-cell proliferation, and apoptosis.
Reduced �-cell mass would be a logical explanation for the
development of hyperglycemia in the E1-DN mice. To
study this, newborn and 2-month-old pancreata were dis-
sected, weighed, and fixed in paraformaldehyde and pro-
cessed through routine histology. The weight of the
pancreas per body weight did not differ between the
wild-type and E1-DN mice (1.33 � 0.069% vs. 1.37 �
0.060%, respectively), allowing the use of relative insulin
positive area as a reliable reflection of total pancreatic

FIG. 5. Reduced �-cell mass in E1-DN mice. A: Morphometric quantitation of insulin-positive area relative to the whole pancreatic area (n � 4
mice for each genotype) shows that the heterozygous (HEZ) ( ) and homozygous (HOZ) (f) E1-DN mice have 70–85% less �-cells when compared
with the wild-type (WT) (�) mouse at the age of 2 months. Results are expressed as means � SE. B: There is no difference in the expression of
glucagon between wild-type and E1-DN mice at this age. C: The number of islets per pancreatic area is reduced by 30% in the E1-DN mice. D: The
relative �-cell surface area from birth until the age of 7 months. *P < 0.05; **P < 0.01. E, wild type; F, homozygous.
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�-cell mass in morphometric analysis (see below). How-
ever, the pattern of insulin immunoreactivity was dramat-
ically abnormal in the E1-DN mice. In homozygous mice,
the islets were clearly smaller and this was due to a
marked loss of insulin-positive cells (Fig. 4). In the het-
erozygous mice, the islets were somewhat larger, but
instead of the homogenous insulin staining seen in wild-
type islets, there was a large variation in the staining
intensity, and many of the centrally located cells lacked
insulin immunoreactivity (Fig. 4B–D). Another �-cell–
specific protein, amylin, showed a similar expression
pattern at all ages studied (Fig. 4E–H). The relative �-cell
surface area (Fig. 5A) of the E1-DN mice was highly
reduced at the age of 2 months (wild type 0.63%, heterozy-
gous 0.20%, homozygous 0.09% of the whole pancreatic
area; P 	 0.001). The E1-DN pancreata also contained less
insulin (E1-DN heterozygous 196 � 20 �IU/mg tissue vs.
wild type 408 � 20 �IU/mg tissue), corresponding to the
results of the morphometric analysis. There was no
change in the relative surface area of glucagon-positive

-cells correlating with the specificity of the pdx-1 pro-
moter (Fig. 5B). The reduced �-cell mass was mainly due
to a reduction of this cell type in each islet because there
was only a marginal decrease in the number of islets per
pancreatic area (Fig. 5C). The �-cell mass defect clearly
developed primarily during the early postnatal expansion
phase (Fig. 5D). In the newborn mice, the relative �-cell
surface area was reduced by 52% but at 3 months by 86%
compared with wild-type littermates. Thereafter, the dif-
ference remained fairly constant. Expression of the �-cell
glucose transporter GLUT-2 was studied immunohisto-
chemically at 3- and 12-month-old wild-type and E1-DN

mice. In the wild-type islets, GLUT-2 immunoreactivity
was specifically located at the islet cell membrane. In
sharp contrast, only faint and diffuse cytoplasmic immu-
noreactivity was seen in the transgenic islets at both time
points, although some membrane-bound GLUT-2 staining
was occasionally visible in the older animals (Fig. 6).

Proliferation of �-cells was studied by insulin/Ki67 dou-
ble immunohistochemistry during the first 2 postnatal
weeks (Fig. 7A). The labeling index of E1-DN �-cells was
already reduced in the newborn mice by �50% (P 	 0.05).
At postnatal day 7 (D7), the proliferation rate had in-
creased in the wild-type mice but decreased in the E1-DN
mice (wild-type 7.44%, homozygous 2.41%; P 	 0.001). At
postnatal day 14, the proliferation of wild-type �-cells had
decreased to 4.6%, while the proliferation of E1-DN �-cells
remained at a low level (2.6%; P 	 0.05). Apoptosis was
studied by immunostaining newborn and 1- and 2-week-
old pancreata for active (i.e., cleaved) caspase-3 and
double staining for insulin. Interestingly, the number of
apoptotic cells was lower in the postnatal E1-DN homozy-
gous pancreata compared with wild-type pancreata when
studied at the whole-pancreas level (Fig. 7B; P 	 0.05).
However, no difference could be detected in the rate of
�-cell–specific apoptosis (0.50% in the wild-type vs. 0.47%
in the E1-DN pancreata).
�-Cell function. An intraperitoneal glucose tolerance test
was used to study insulin secretion in vivo. Before the test,
the mice fasted for 16 h. As can be seen from Fig. 8A, the
E1-DN animals were hyperglycemic throughout the test,
while the wild-type mice returned to normoglycemia by
2 h. The increase of circulating insulin in response to the
glucose challenge was blunted and delayed in the E1-DN

FIG. 6. Reduced GLUT-2 expression in E1-DN pancreata. GLUT-2 immunoreactivity (brown; arrow) is strong at cell membranes in the 2- and
12-month-old wild-type (wt) islets (A and C), while in the E1-DN islets (B and D) only weak cytoplasmic staining is seen (arrow) with occational
membranous reactivity in the older islets. Magnification �40.
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mice (Fig. 8B). Interestingly, the fasting insulin level of the
E1-DN heterozygous mice was within the range of wild-
type mice and significantly higher than in the E1-DN
homozygous animals. However, the immediate insulin
response was absent also in the E1-DN heterozygous mice,
and only a delayed, low-magnitude response between 60
and 120 min was detected.

Glucagon-like peptide-1 (Glp-1) has been shown to exert
some of its biological functions through transactivation of
EGF-R (19,20). To test whether this holds true for the
insulinotropic effect of Glp-1, an intraperitoneal glucose
tolerance test was also performed with the Glp-1 analog
exendin-4 in the wild-type and E1-DN heterozygous mice.
As seen in Fig. 8C, exendin-4 effectively improved the
glucose tolerance in both the wild-type and E1-DN mice.
The E1-DN heterozygous mice were able to respond to
exendin-4 by increasing the insulin secretion (Fig. 8D) and
obtained normoglycemia at the end of the glucose toler-
ance test. Finally, we studied the insulin release in islets
isolated from wild-type and E1-DN heterozygous mice.
Islets of homozygous mice could not be studied because
they could not be isolated in sufficient numbers. As shown
in Fig. 9, the insulin content and the absolute amounts of

insulin released were significantly lower in the transgenic
than wild-type islets. However, insulin release in response
to stimulation by either glucose or glucose plus exendin-4
was well preserved in the transgenic islets. When related
to the cellular insulin content, the E1-DN islets even
released more insulin than control islets (Fig. 9B). Trans-
gene expression was verified also in the isolated islets by
immunostaining of human EGF-R. A uniform expression
pattern was seen, thus excluding the possibility that only
nontransgenic islet cells would have been selected in the
isolation process. Also, GLUT-2 expression was similarly
decreased in the isolated E1-DN islets as in the intact
tissue (data not shown).

DISCUSSION

The present study shows that intact EGF receptor signal-
ing in the pancreatic islet cells is essential for the achieve-
ment and maintenance of a sufficient �-cell mass and that
defects in this pathway lead to diabetes. Based on our
results, this appears to be mainly due to decreased �-cell
proliferation and, to a lesser extent, depends on an early
defect in �-cell neogenesis. We have previously shown that
in the EGF-R–deficient mouse (EGF-R�/�), fetal differen-
tiation of �-cells is delayed (14). In the E1-DN mice, there
is a partial tissue-specific defect in EGF-R signaling that
does not lead to the severe neonatal islet phenotype seen
in EGF-R�/� mice but leads to a 50% defect in the number
of �-cells at the time of birth. However, the major effect is
postnatal because at the age of 2 months the defect is
�85%. This can clearly be explained by the lack of a
postnatal surge in �-cell proliferation. Hyperglycemia de-
velops within the first 2 weeks, consistent with the failure
in �-cell mass expansion.

It is notable that the expression of GLUT-2 was clearly
impaired in the transgenic islets. A similar finding was
reported in transgenic mice with �-cell–targeted dominant
negative fibroblast growth factor-R1 expression (21). How-
ever, this may not be of major functional importance, since
there is no inherent defect in the capacity of E1-DN islets
to release insulin in response to glucose in vitro. It thus
seems likely that the hyperglycemia and low insulin secre-
tion observed in vivo are principally caused by the reduced
�-cell mass, resulting in a maximally stressed situation for
the insufficient number of �-cells.

Intriguingly, there was a consistent gradual improve-
ment of hyperglycemia in all animals after the age of 1
month. Yet, transgene expression remained stable, and
there was no obvious recovery of the �-cell mass. What
could be the explanation for this? It is known that the
number of �-cells per body weight decreases with age in
rats (22). Thus, it is conceivable that young rodents require
more insulin for the rapid postnatal growth and metabolic
changes associated with sexual maturation than later in
life. This increased insulin requirement is normally met by
the rapid expansion of �-cell mass. Since this does not
occur in the E1-DN mice, diabetes develops. In later life,
the discrepancy between insulin need and production
gradually becomes less obvious and the animals present
with a milder hyperglycemia. The insulin deficiency re-
mained relative, since there was no difference in the body
weight and no obvious effect on the lifespan of the
transgenic diabetic animals. The E1-DN mice are overtly
hyperglycemic but still viable and can thus be used as an
excellent animal model to study long-term consequences

FIG. 7. �-Cell proliferation and pancreatic cell apoptosis. A: Cell
proliferation was quantitated by insulin and Ki67 immunohistochem-
istry from newborn and postnatal day 7 (D7) and 14 (D14) pancreata.
Double-positive cells are expressed relative to insulin positive cells.
There are �40% less proliferating �-cells in the E1-DN pancreas
already at newborn stage, and no enhanced cell proliferation can be
seen in the wild-type �-cells cells. �, wild-type [WT]; �, homozygous
[HOZ]. B: Apoptotic cells were visualized by caspase 3 immunohisto-
chemistry and expressed relative to the whole pancreatic area. No
difference can be seen in apoptotic rate at the newborn stage. However,
at D7 the E1-DN pancreas contains 50% less apoptotic cells and at D14
67% less apoptotic cells. No difference could be seen in �-cell apoptosis
(data not shown). *P < 0.05; **P < 0.01. f, wild-type; �, homozygous.
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of hyperglycemia, such as diabetic nephropathy and
retinopathy.

The proportions of apoptotic islet cells were similar in
young transgenic and wild-type mice. It can be speculated
that we failed to observe an increase in �-cell apoptosis in
the transgenic mice because of incorrect timing and the
short duration of apoptosis in vivo. It is, however, intrigu-
ing that there were significantly fewer apoptotic cells in
the exocrine compartment of the transgenic mice than in
controls. Whether this could be linked with a compensa-
tory mechanism aiming to restore the decreased �-cell
mass remains speculative and requires further studies.
Nevertheless, several lines of evidence suggest that pan-
creatic acinar cells may transdifferentiate into �-cells
(23,24) and that this process requires EGF-R signaling
(25,26).

Recent data have emphasized the role of �-cell prolifer-
ation, rather than neogenesis from precursors, as the
major mechanism responsible for the control of postnatal
�-cell mass (27,28). During late gestation and early post-
natal period many organs, including pancreas, undergo
massive cell proliferation. In mouse, this results in a
fourfold increase in �-cell mass before weaning (28).

Experiments with mice deficient in cyclin D2 have clearly
demonstrated that this increase is mainly depending on
proliferation. Mice deficient in cyclin D2 are born with a
normal �-cell mass but are not able to expand their �-cell
mass during second postnatal week and develop glucose
intolerance (28). The postnatal pancreatic �-cell appears
to be a unique cell type in its dependence on cyclin D2. The
phenotype of cyclin D2�/� mice closely resembles that of
the E1-DN mice. It is likely that the proliferation defect of
our mice is directly linked with cell cycle regulation.
EGF-R signaling has been shown to lead to activation of
cyclin D/cdk4, subsequent Rb phosphorylation, and G1/S
transition (29). Unpublished data from our laboratory
suggest that an inhibitor of cdk4, p18 (INK4c), is upregu-
lated and cyclin D2 downregulated in the E1-DN islets.
Further studies are needed to verify a possible link be-
tween EGF-R and cyclin D2 via the p18 pathway.

Targeted inactivation of EGF superfamily members (i.e.,
EGF, heparin-binding EGF, transforming growth factor-
,
amphiregulin, and BTC) in mouse models has shown that
they have specific roles in cell proliferation and pattern
formation of all germ layers (30–33). Yet, the resulting
phenotypes are mild when compared with EGF-R�/� mice,

FIG. 8. Intraperitoneal glucose tolerance test. Four-month-old male mice (n � 12 for both wild-type [WT] and E1-DN mice) were injected
intraperitoneally with glucose (1 mg/g body wt), and blood glucose (A) and serum insulin (B) values were measured at indicated time intervals.
Alternatively, the mice (n � 6 for both wild-type and E1-DN) were injected with exendin-4 (100 ng) intraperitoneally followed by a glucose
challenge (1 mg/g body wt), and blood glucose (C) and insulin (D) levels were measured at indicated time intervals. Results are shown as means �
SE. *P < 0.05; **P < 0.01. E, wild-type; f, heterozygous [HEZ]; ‚, homozygous [HOZ].
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suggesting excessive redundancy to ensure sufficient
EGF-R activation. Accordingly, no single EGF-like growth
factor seems to be vital for normal development. Even
though BTC is strongly expressed in the pancreas and
known to stimulate �-cell proliferation and differentiation
(12,34), BTC�/� mice appear to have normal pancreatic
differentiation and blood glucose levels (33). Recently,
hormones and peptides other than those that are members
of the EGF superfamily have been shown to be able to
active EGF-R through metalloprotease-mediated ligand
shedding (35). Glp-1 is one of these, and it is of particular
interest in �-cell biology. It acts through its G-protein
coupled receptor and stimulates insulin gene expression,
secretion, and �-cell proliferation and inhibits �-cell apo-
ptosis (36). The proliferative effect of Glp-1 has been

shown to involve transactivation of EGF-R and phospha-
tidylinositol 3-kinase signaling (19,20). Our results show
that expression of a kinase-negative EGF-R in the islets
impairs the activation of the downstream mitogen-acti-
vated protein kinase and phosphatidylinositol 3-kinase
signaling pathways, as evidenced by reduced phosphory-
lation of ERK and Akt. It is thus possible that endogenous
Glp-1 cannot efficiently stimulate �-cell proliferation, and
this could partly explain the observed loss of postnatal
�-cell expansion. Nevertheless, this was not tested in the
current study. However, the potentiating effect of the Glp-1
analog exendin-4 on glucose-stimulated insulin secretion
was intact in the E1-DN mice both in vivo and in vitro. This
suggests that EGF-R signaling is not involved in the direct
insulinotropic effects of Glp-1.

To conclude, our studies show that intact EGF-R signal-
ing is crucial for the achievement of an adequate �-cell
mass. It is likely that attenuation of EGF-R in the islets
perturbs the actions of a number of growth factors re-
quired for both �-cell proliferation and neogenesis.
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