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Since the discovery of glucagon-like peptide 17–36NH2 (GLP-1)
as an “incretin” hormone (1), numerous GLP-1 receptor
agonists and incretin hormone degradation (dipeptidyl pep-
tidase 4) inhibitors have been developed for the treatment
of patients with type 2 diabetes (2). The success of these
therapeutics in reducing HbA1c levels, as well as decreasing
body weight and exerting cardioprotective actions in the
case of the agonists, has been well established, and incretin-
based drugs are now recommended for dual-therapy manage-
ment of type 2 diabetes (3). However, considerable interest
has been engendered in a third possible approach to GLP-1–
based therapy, that being enhancement of endogenous se-
cretion, either alone or with a degradation inhibitor (4).
GLP-1 is secreted by the endocrine L cell of the intestinal
epithelium in rodents and humans (5). GLP-1 release is
stimulated by ingested nutrients, including glucose, al-
though neural and hormonal secretagogues have also been
described (4). However, a thorough understanding of the
molecular underpinnings of human L-cell secretory re-
sponses is critical if GLP-1 secretagogues are to be consid-
ered for therapeutic use.

L cells are diffusely scattered through the gut epithelium,
providing a major challenge to their study (5). Furthermore,
although the advent of techniques to fluorescently label
murine L cells has enabled their isolation, purified L cells
fail to survive in vitro (6). Consequently, the cellular mech-
anisms underlying GLP-1 secretion by the primary murine
L cell are now commonly studied using heterogeneous cul-
tures derived from isolated crypts (6,7). Such in vitro mod-
els have been generated from all regions of the mouse
intestine, although most reports have focused on the prox-
imal 50% of the small intestine and the colon. These studies
have elucidated the major signaling pathways that underlie
the regulation of GLP-1 release by the murine L cell, in-
cluding, most notably, the response to glucose (Fig. 1) (6,7).
Although similar approaches have been used to culture hu-
man crypt cells, the majority of such studies have focused
on the colon, a relatively accessible site for tissue sampling

(8). The article by Sun et al. (9) in this issue of Diabetes
presents novel insight into the cellular mechanisms under-
lying glucose-stimulated GLP-1 secretion by the human
L cell, using biopsies obtained from not only the colon but
also the duodenum and ileum.

In the first part of the study, healthy subjects received an
intraduodenal glucose infusion followed by collection of
duodenal biopsies after 30 min for immunostaining; plasma
was also obtained to determine circulating GLP-1 levels (9).
Consistent with findings in rats (10), luminal glucose in-
duced a 70% increase in the number of human duodenal
L cells expressing phosphorylated calcium calmodulin–depen-
dent kinase II, an enzyme that links extracellular glucose to
insulin secretion in the b-cell (11). A parallel increase was
also observed in plasma GLP-1 levels, although the exact
source of this GLP-1 cannot be identified, as the rate of
infusion and single time point of sampling almost certainly
would have permitted glucose activation of the more abun-
dant jejunal L cells (5,12). Consistent with this possibility,
GLP-1 release is much greater following intrajejunal as com-
pared with intraduodenal infusion of glucose in normal
humans (13).

In the second part of the study, ileal and colonic
mucosal biopsies were collected from patients at the time
of intestinal surgery (9). These samples, as well as those
from the duodenum, were examined acutely for their GLP-1
secretory responses to glucose. Interestingly, the results in-
dicate both similarities to and differences from the murine
L cell (Fig. 1). First, as expected based on the mouse studies
(6,7), glucose stimulated GLP-1 release from human small
intestinal (duodenal and ileal) L cells; however, in contrast
to the mouse, human colonic L cells did not respond to
glucose. Analysis of the mechanisms underlying ileal L cell
glucose sensing demonstrated additional species-dependent
intracellular responses. Hence, the human L cell was mark-
edly less sensitive to glucose than that of the mouse (hu-
man ileal $200 mmol/L vs. mouse proximal $1 mmol/L
and colonic $0.1 mmol/L [Fig. 1]). Both species use the
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sodium–glucose transporter 1 (SGLT1) as a key mediator of
glucose-induced GLP-1 release, translocating one glucose
with two Na+; the latter causes depolarization (at least in
the murine L cell), leading to opening of voltage-dependent
calcium channels and activation of calcium-induced exo-
cytosis. As the Km for Na+ transport by murine SGLT1 is
2–7 times lower than that for human SGLT1 (14,15), these
differences may account, in part, for the differential sensi-
tivities of the small intestinal L cells to glucose. In addition,
although human small intestinal L cells are known to express
SGLT1 (16), it has not been determined that this is the case
for human colonic L cells. Furthermore, recent studies have
demonstrated that proximal L cells in mice and humans
differ markedly from distal L cells in their polyhormonal
expression of several other gut endocrine peptides (17,18).
As glucose is normally absorbed by the proximal gut, the
physiological relevance of any glucose sensing by the distal
L cell remains unclear. Nonetheless, as GLP-1 serves as an
“ileal brake” to delay intestinal transit (4), such responses
may enable feedback in the setting of an overload of prox-
imal absorptive capacity. Indeed, one possible advantage of
this distal sensing capacity is observed following malabsorp-
tive bariatric surgery, which directs unusually large volumes
of nutrients into the distal small intestine, thereby increas-
ing GLP-1 secretion in association with improved glycemic
tolerance (19). Finally, although other subtle differences
found between the human and murine L cells relate to roles
for the glucose transporter GLUT2, glucose metabolism, the
KATP channel, and the taste receptors T1R2/R3, none of
these appear to be primary regulators of glucose sensing
in either species (Fig. 1).

It must be recognized that there are also experimental
differences between the study by Sun et al. (9) and those
examining the mouse L cell, including the site of origin (ileal
vs. proximal and colonic), the method of ex vivo analysis

(explants vs. culture), the use of whole mucosal biopsies con-
taining villus and crypt L cells vs. isolated crypts only, and the
limited amount of human tissue available, which precluded
testing of multiple complementary inhibitors. Nonetheless,
the study by Sun et al. represents a first attempt to sys-
tematically analyze the intracellular mechanisms underlying
glucose sensing by the human L cell. Ultimately, although
similarities between the murine and human L cell will suggest
potential therapeutic targets for GLP-1 secretagogues, it is the
differences between these cells that will be the key to success.
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