IN THIS ISSUE
535 In This Issue of Diabetes

PERSPECTIVES IN DIABETES
537 New Understanding of β-Cell Heterogeneity and In Situ Islet Function
R.K.P. Benninger and D.J. Hodson

COMMENTARIES
548 A Weighty Matter: Can PUFAs in Pregnancy Prevent Obesity?
B.B. Albert and W.S. Cutfield

550 SRGAP2α: A New Player That Modulates Podocyte Cytoskeleton and Injury in Diabetes
M. Levi, K. Myakala, and X. Wang

552 Values and Limitations of Targeting IncRNAs in Diabetic Nephropathy
J. Long and F.R. Danesh

METABOLISM
554 The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function

569 SGK1/FOXO3 Signaling in Hypothalamic POMC Neurons Mediates Glucocorticoid-Increased Adiposity

581 Long Noncoding RNA IncSHGL Recruits hnRNPA1 to Suppress Hepatic Gluconeogenesis and Lipogenesis
J. Wang, W. Yang, Z. Chen, J. Chen, Y. Meng, T. Peng, L. Sun, L. Dou, J. Li, Q. Cui, and J. Yang

594 Perilipin 5 Deletion Unmasks an Endoplasmic Reticulum Stress–Fibroblast Growth Factor 21 Axis in Skeletal Muscle

SIGNAL TRANSDUCTION
607 Protein Kinase G Activation Reverses Oxidative Stress and Restores Osteoblast Function and Bone Formation in Male Mice With Type 1 Diabetes

624 Skeletal Muscle–Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling Node That Regulates Obesity-Induced Insulin Resistance

636 Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans

OBESITY STUDIES
651 Low Neonatal Plasma n-6/n-3 PUFA Ratios Regulate Offspring Adipogenic Potential and Condition Adult Obesity Resistance

662 Modest Decreases in Endogenous All-trans-Retinoic Acid Produced by a Mouse Rdh10 Heterozygote Provoke Major Abnormalities in Adipogenesis and Lipid Metabolism
D. Yang, M.G. Vuckovic, C.P. Smullin, M. Kim, C.P.-S. Lo, E. Devericks, H.S. Yoo, M. Tintcheva, Y. Deng, and J.L. Napoli

ISLET STUDIES
674 Highly Proliferative α-Cell–Related Islet Endocrine Cells in Human Pancreata
C.J. Lam, A.R. Cox, D.R. Jacobson, M.M. Rankin, and J.A. Kushner

IMMUNOLOGY AND TRANSPLANTATION
687 Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes

697 Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease Susceptibility Alleles
M.J. Smith, M. Rihanek, C. Wasserfall, C.E. Mathews, M.A. Atkinson, P.A. Gottlieb, and J.C. Cambier

Keep up with the latest information for Diabetes and other ADA titles via Facebook (/ADAJournals) and Twitter (@ADA_Journals).
All articles in Diabetes are available online at diabetes.org/diabetes, are available free to subscribers, or can be purchased as e-prints or reprints.
ADA’s Diabetes Core Update podcast is available at diabetesjournals.org and through iTunes.
On the cover: Immunofluorescence staining of transporter associated with antigen processing 1 (TAP1) (green), HLA-ABC (red), and insulin (cyan) on a human pancreas sample from a patient with type 1 diabetes shows high expression of TAP1 and HLA-ABC in an insulin-containing islet, indicative of a predisposition for immune recognition. Image courtesy of Mark A. Russell, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K. His article, “Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes,” appears in this issue of Diabetes (p. 687).