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Accumulation of lipid in skeletal muscle is thought to be
related to the development of insulin resistance and type
2 diabetes. Initial work in this area focused on accumu-
lation of intramuscular triglyceride; however, bioactive
lipids such as diacylglycerols and sphingolipids are now
thought to play an important role. Specific species of
these lipids appear to be more negative toward insulin
sensitivity than others. Adding another layer of complex-
ity, localization of lipids within the cell appears to in-
fluence the relationship between these lipids and insulin
sensitivity. This article summarizes how accumulation of
total lipids, specific lipid species, and localization of lipids
influence insulin sensitivity in humans. We then focus on
how these aspects ofmuscle lipids are impacted by acute
and chronic aerobic and resistance exercise training. By
understanding how exercise alters specific species and
localization of lipids, itmay bepossible to uncover specific
lipids that most heavily impact insulin sensitivity.

Fatty Acid Metabolism, Intramuscular Triglycerides,
and Insulin Resistance
Fatty acids can serve as a key fuel source for contracting and
exercising muscle (1). Intramuscular triglycerides (IMTG)
were first described by Denton and Randle (2) and soon
thereafter were reported to be used during exercise (3).
Contemporaneous studies by Randle et al. (4) reported that
aberrant fatty acid metabolism was implicated in dimin-
ished glucose uptake and diabetes, and later studies collec-
tively concluded that reduced capacity for fatty acid
oxidation within skeletal muscle was implicated in excess
IMTG accumulation (5,6), insulin resistance (7), and type
2 diabetes (8). This large body of work seemed to be
consistent with initial studies performed in the 1990s
linking IMTG content to insulin resistance and type 2 di-
abetes (9,10).

These early studies were, unknowingly, in apparent con-
trast in supporting both positive and negative roles for IMTG
in health and disease. Moreover, the question of whether
IMTG were harmful or beneficial was highlighted by the
“athlete’s paradox” (11), in which endurance-trained athletes
have IMTG content similar to that of individuals with type
2 diabetes and yet are very insulin sensitive. Over the past
two decades, numerous subsequent studies have attempted
to define “good” and “bad” muscle lipids and to disentangle
this conundrum. New ideas along with advances in muscle
lipid composition and localization warrant an updated review
on this topic. Gaps in knowledge and understudied areas are
highlighted to focus future research efforts and bring more
clarity to this complex area.

Diacylglycerol, Sphingolipids, Acylcarnitines, and
Insulin Resistance
Model systems as well as human studies, aided by advances
of mass spectrometry, have shifted the field beyond tri-
glycerides to recognize that specific complex lipids within
muscle may be more deleterious than others and are more
likely implicated in mechanisms underlying insulin resis-
tance (12–17). These other lipids associated with insulin
resistance include diacylglycerol (DAG), sphingolipids, long-
chain acyl-CoA (LCA-CoA), and acylcarnitines, as well as
others (Fig. 1).

Muscle DAG accumulation has been implicated in in-
sulin resistance, first in denervated rodent muscle (18), as
well as following intralipid infusion in humans (19). DAG
activate atypical PKC isoforms to decrease insulin signaling
(20). In vitro studies showed that increased PKC activity
results in decreased insulin-stimulated glucose uptake through
phosphorylation of serine residues of IRS-1, including direct
PKC phosphorylation of Ser1101 (21), enhanced c-Jun
N-terminal kinase (JNK) and inhibitor of kB kinase
(IKKB) phosphorylation of Ser307 (22), and increased
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p44/42 MAPK activity and Ser612 and Ser636 phosphor-
ylation (23) resulting in decreased signaling through the
phosphatidylinositol-3 kinase/AKT pathway (24). Sphin-
golipids have also been implicated in insulin resistance, with
muscle ceramide accumulation first reported in obese
insulin-resistant humans (25). In vitro studies revealed ceram-
ides reputedly decrease insulin sensitivity by activating
protein phosphatase 2A and PKCz, which dephosphorylate
AKT (26), and/or retain AKT in caveolin-enriched micro-
domains, which decreases insulin signaling (27). Dihydro-
ceramides have recently been appreciated as bioactive
molecules with the ability to impact cellular signaling
through mechanisms distinct from ceramide, although
whether they impact insulin sensitivity is unclear (28).
Sphingosine may antagonize DAG-induced insulin resis-
tance, as it has been shown to inhibit PKC and decrease
DAG content in several cell types (29). Sphingosine can be
phosphorylated to sphingosine-1-phosphate (S1P), which
decreases ceramide content and promote increases in-
sulin sensitivity in mice (30). However, the importance of
sphingosine and S1P to muscle insulin sensitivity in
humans is unclear, as muscle concentrations are not dif-
ferent (12,15,16,25) or greater (6) in insulin-resistant com-
pared with insulin-sensitive individuals. Glucosylceramides
and downstream gangliosides have been linked with

insulin resistance in animal models (31), an effect that
appears more potent in adipose tissue and liver com-
pared with muscle (32). Similarly, lactosylceramides are
also related to decreased insulin sensitivity in rodents
(33). Other sphingolipids such as sphingomyelin may also
be related to insulin resistance. However, sphingomyelin
does not appear to directly impact insulin sensitivity
in myotubes (34) but may be a pool from which ceramides
are made in vivo (35). LCA-CoA accumulate and promote
insulin resistance in muscle of rodents (36) and humans
(37). In vitro studies show that LCA-CoA can activate PKC
to decrease insulin signaling (38) and are also nuclear
ligands (39).

Changes or differences in more polar lipids such as
acylcarnitines are often linked with perturbed fatty acid
oxidation and are associated with insulin resistance, and
yet the exact mechanism by which they influence insulin
sensitivity is not known (40). However, individuals with
mutations in LCA-CoA dehydrogenase deficiency have
significantly elevated acylcarnitines compared with age-
matched control subjects yet have similar glucose tol-
erance, suggesting that a direct effect of acylcarnitines
on insulin sensitivity is unlikely (41). There are many
other polar lipids that may also impact insulin sensi-
tivity that have received less attention in muscle,

Figure 1—Potential mechanisms by which intramuscular lipids impact insulin sensitivity in skeletal muscle. AKT, protein kinase B; dhCer,
dihydroceramide; FFA, free fatty acids; IRS-1, insulin receptor substrate-1; PKC, protein kinase C; PL, phospholipids; PP2A, protein
phosphatase 2A; SPM, sphingomyelin; TAG, triacylglycerol.
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including phosphatidic acid, lysophosphatidic acid, ganglio-
sides, and ceramide-phosphate, among others.

Experimental alterations in muscle lipids have been
reported to affect insulin sensitivity in lipid-induced insulin
resistance in humans (19,42), although the response ofDAG
and sphingolipids to insulin-sensitizing lifestyle interven-
tions is variable (15–17,43–46). Additionally, there are
paradoxical studies in the literature dissociating DAG and
sphingolipid content from insulin sensitivity in humans
(47,48) and animal models (49,50). These conflicting reports
highlighted that changes in lipid concentration do not con-
sistently explain alterations in insulin sensitivity and/or that
factors other than the total content of bioactive lipids play
a role in decreasing insulin sensitivity. Later in this article, we
will discuss studies using acute exercise and training to
support a role for specific lipids within muscle in insulin
resistance. However, other factors that may play a role in
conflicting data are the difficulties inmeasuring muscle lipid
content, the diverse techniques to measure lipid content,
and improvements in methodologies such as mass spec-
trometry with greater breadth and sensitivity. These areas
are not the topic of this article but have certainly played
a role in shaping disparate results in the literature.

Specific Intramyocellular Lipid Isoforms and Species
Likely Promote Insulin Resistance
The total amount or concentration of any class of lipid may
be inadequate to explain function. Diversity of fatty acids
in our diet as well as enzymatic synthesis, elongation, and
desaturation leads to diversity in the acyl groups of all
complex lipids. Different combinations of acyl groups result
in various molecular species of lipids, each of whichmay have
unique biological actions. For example, DAG is formed from
two acyl chains esterified to a glycerol backbone resulting in
many possible species. Further, there are three possible
isomers of DAG based on the location of the two acyl chains
on the three carbons of the glycerol backbone (1,2-, 1,3-, and
2,3-DAG) (51). Various DAG isomers and species are im-
portant because only 1,2-DAG are thought to activate PKC,
and within 1,2-DAG isomers there is variable potency of
each DAG species to activate PKC (20). Advances in mass
spectrometry have facilitated measurement of specific spe-
cies of lipids as they relate to insulin resistance. Data are
mixed on whether specific molecular species of DAG
uniquely induce insulin resistance, with some indica-
tion that di-saturated DAG species are more negative toward
insulin resistance (13) and one report that di-unsaturated
DAG are elevated in insulin-resistant muscle (44). Under-
standing species level detail is likely critical to understanding
how these lipids can impact metabolic function and insulin
sensitivity.

It is also important to look beyond canonical PKC
signaling to interpret how DAG may impact metabolism.
The molecular basis of DAG specificity for PKC isoform
activation is due to DAG binding to a C1 domain to alter
PKC structure promoting membrane insertion and acti-
vation (52). However, other proteins also contain a C1

domain and thus could alter cellular signaling. These other C1
domain–containing proteins include chimaerins, RasGRPs,
MUNC13s, protein kinase D, and DAG kinase (53). Few
studies have addressed non-PKC DAG targets, how they
could impact insulin sensitivity, and how they change with
acute and chronic exercise training.

Similar to DAG, there are many types of sphingolipids,
each with a unique structure, of which ceramide is widely
studied. Within each type of sphingolipid there are many
possible species based on the composition of the acyl chains,
each of which may have unique biological actions (54).
Unlike in the DAG literature, there is consistent agreement
that specific species of sphingolipids are associated with
insulin resistance, as several reports have shown C16:0 and
C18:0 ceramide species to be most potent for decreasing
insulin sensitivity (12,55).

There are also diverse species of LCA-CoA in skeletal
muscle; however, in obese humans, most all species of LCA-
CoA accumulate in skeletal muscle (5). LCA-CoA decreased
after insulin-sensitizing weight loss, with the decrease in
C16:0 containing LCA-CoA most related to an increase in
insulin sensitivity (56). LCA-CoA, specifically C16:0 spe-
cies, may impair mitochondrial ADP transport, which may
influence reactive oxygen species formation and insulin
sensitivity (57). Therefore, C16:0 LCA-CoA may be particu-
larly potent in promoting insulin resistance, but the mech-
anism responsible is not known.

These data collectively support the hypothesis that species-
level data are critical to understanding how bioactive lipids
impact cellular signaling and promoted decreased insulin
sensitivity in skeletal muscle.

Localization of Intramuscular Lipids Influences Insulin
Sensitivity
The realization that specific species of lipids are linked to
decreased insulin sensitivity was an advance but still over-
simplified the complex reality of lipids in muscle. Muscle lipid
content is impacted by fiber type, with more lipid in type I
compared with type II fibers. Further, lipids exist in many
subcellular compartments and are constantly being trafficked
between cellular compartments. Alterations in compartmen-
tation and trafficking of lipidsmay reveal differences between
groups and interventions that have been overlooked by
previous studies. Emerging evidence shows that localization
of triglycerides, DAG, and sphingolipids appears to play an
important role in promoting decreased insulin sensitivity
(35,42,58) (Fig. 2).

Triglyceride
IMTG storage is impacted bymusclefiber type. IMTG content
is greater in type I compared with type II fibers except in
individuals with type 2 diabetes, where IMTG content ismore
evenly split between type I and II fibers (59). IMTG is further
compartmentalized in skeletal muscle, as transmission elec-
tron microscopy revealed subsarcolemmal IMTG was nega-
tively related to insulin sensitivity in type II fibers, while
intermyofibrillar IMTG was unrelated or positively related to
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insulin sensitivity regardless of fiber type. Further, exercise
training decreased subsarcolemmal IMTG distribution, which
was associated with increased insulin sensitivity (60). The
physical location of IMTG droplets relative to mitochondrial
is likely important, as their close proximity may facilitate
oxidation of IMTG (61).

DAG
Early work from the Bergman laboratory showed that DAG
localized in skeletal muscle membranes were negatively
related to insulin sensitivity, while DAG in the cytosolic
compartment were unrelated to insulin sensitivity (13).
These findings were repeated by others (42,58), and col-
lectively these data pointed to the need for a more detailed
understanding of how DAG compartmentation relates to
insulin sensitivity in skeletal muscle. We recently reported
on the distribution of DAG isomers and species in sarco-
lemmal, cytosolic, nuclear, and mitochondrial/endoplasmic
reticulum (ER) compartments in skeletal muscle from
individuals spanning the physiological spectrum of insulin
sensitivity (35). We found that sarcolemmal 1,2-DAG ac-
cumulated in athletes, as well as obese individuals with and
without type 2 diabetes relative to lean control subjects.
This was unexpected and suggested that there is further
subsarcolemmal localization of DAG in athletes that may
explain similar DAG accumulation despite dichotomous
sensitivity to insulin. 1,3-DAG isomers were not different
in any compartment between groups. Unexpectedly, we
found that mitochondrial/ER 1,2-DAG accumulated in
athletes and lean individuals and was positively related to
insulin sensitivity. More work is required to understand
whether this accumulation represented mitochondrial 1,2-
DAG accumulation that may be related to dense cristae

packing found in athletes (62) or ER accumulation that
reflects high rates of IMTG synthesis in athletes and insulin-
sensitive individuals (63–66).

Sphingolipids
Ceramides have been known to be localized in various
compartments in different cell types for many years (67).
However, the relationship of localized sphingolipids to insulin
sensitivity in human skeletal muscle was only recently ap-
preciated. Chung et al. (68) showed that subsarcolemmal
ceramides, specifically the C16:0 and C18:0 species, were
negatively related to insulin sensitivity. We confirmed this
finding and extended it to suggest that ceramides in sar-
colemmal, mitochondrial/ER, and nuclear compartments
were negatively related to insulin sensitivity (35). We also
found that the relationship between saturated ceramides
and decreased insulin sensitivity was strong, particularly
for C18:0 ceramide. Sarcolemmal accumulation of sphin-
gomyelin and lactosylceramides was also inversely related
to insulin sensitivity. Therefore, accumulation of sphingo-
lipids in any compartment appears to be related to insulin
resistance.

Polar Lipids
Little is known regarding the subcellular compartmenta-
tion of acylcarnitines, sphingosine, ceramide-1-phosphate,
gangliosides, phosphatidic acid, phospholipids, and LCA-CoA.
Based on their function, acylcarnitines would be expected in
the mitochondrial and the cytosolic compartments. Nuclear
acyl-CoA and phospholipids are thought to be nuclear ligands
influencing gene transcription (39). LCA-CoA are thought to
be compartmentalized in distinct pools in skeletal muscle of

Figure 2—Relationships between lipid localization and insulin sensitivity in skeletal muscle in humans. Lipids in red, negatively related to
insulin sensitivity; lipids in green, positively related to insulin sensitivity. Cytosolic lipids were not related to insulin sensitivity.
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rodents, but analysis of concentration in specific locations in
humans has not been performed (69).

It is unlikely that we will fully understand how muscle
lipids impact diabetes risk or how they may be implicated
in treating insulin resistance or diabetes until we under-
stand the mechanisms of how specific species of lipids in
specific cellular locations modify insulin sensitivity. Fur-
ther, we need to embrace the complexity and interpret the
full breadth of muscle lipids together in order to under-
stand how these diverse pools of molecules collectively
impact insulin sensitivity. Publications too frequently focus
on individual lipids or lipid species in isolation as they relate
to insulin resistance. It is alluring to try to simplify com-
plexity, but we need to consider the minutia in order to
progress understanding.

Now that we have provided some background for muscle
lipids as they related to insulin resistance, we can dive into
how exercise impacts muscle lipid content, species, and
localization to influence insulin sensitivity. As exercise
can be a powerful insulin-sensitizing intervention, it can
also be a powerful tool to reveal and refute the potential
roles of complex muscle lipids in insulin resistance.

Exercise and Muscle Lipids
Exercise is a cornerstone in lifestyle interventions to pre-
vent diabetes (70) and a powerful tool to enhance insulin
sensitivity. Evaluating how acute and chronic aerobic and
resistance exercise impacts muscle lipid content, compo-
sition, and localization as it relates to insulin resistance
may help reveal mechanisms for the insulin-sensitizing
effects of exercise. Ultimately, understanding how exercise
modifies muscle lipids to impact insulin sensitivity can also
reveal howobesity, inactivity, and sedentary behavior promote
muscle insulin resistance, prediabetes, and type 2 diabetes.

Acute Exercise, Insulin Sensitivity, and Muscle Lipids

Insulin Sensitivity Increases After Acute Aerobic and
Resistance Exercise
Insulin sensitivity increases by 18–30% after an acute bout
of aerobic exercise and persists for up to 48 h (71). The
time course of this response indicates that only some of
this increase can be attributed to glycogen depletion, as
enhanced insulin sensitivity post-exercise takes 6 h to
reach a peak despite persistent glycogen degradation through-
out this period (72). Several groups have reported that muscles
stimulated to contract acutely in vitro only show increased
insulin sensitivity when contractions are performed in serum,
suggesting that humoral factors in addition to glycogen de-
pletion play an important role in insulin sensitization (73).
These humoral factors are not known and highlight significant
gaps in knowledge regarding acute exercise–induced insulin
sensitization. Similar to aerobic exercise, resistance exercise
increases insulin sensitivity even after one exercise session (74),
but there is a paucity of mechanistic studies to explain these
effects. The metabolic and physiologic stress with resistance
exercise is different from that with aerobic exercise, and

therefore it is likely that molecular mechanisms are quite
different between these two exercise modalities.

Acute Aerobic Exercise Effects on Muscle Lipids
An acute bout of exercise is associated with an acute in-
flammatory response, which abates after several hours of
recovery (75). Inflammation can drive formation of lipids
such as sphingolipids, and thus an acute inflammatory re-
sponse may impact the content of muscle lipids immediately
after exercise. It would be expected that these inflammation-
responsive lipids would then change during recovery. There
are limited time course data on muscle lipids during recovery
from exercise. Results from acute exercise studies should be
interpreted with the understanding that muscle lipids could
change significantly over the ensuring minutes and hours
following a single bout of exercise.

The metabolic response to an acute bout of exercise will
also influence degradation of muscle lipids. Exercise of
longer compared with shorter duration will increase plasma
free fatty acid concentration, which influences FFA uptake
and the availability of LCA-CoA for bioactive lipid formation
(76). IMTG utilization during exercise is influenced by cir-
culating FFA content, with lower FFA concentration resulting
in greater utilization of IMTG as a fuel source during exercise
(77). The impact of circulating FFA concentration on other
bioactive lipids is less clear but may impact skeletal muscle
lipid content.
IMTG. Most studies report that an acute bout of aerobic
exercise decreases IMCL content in athletes and lean indi-
viduals but not in obese individuals with or without type
2 diabetes (63,78) (Fig. 3). IMTG degradation during exer-
cise occurs preferentially from type I compared with type II
fibers (79,80). The utilization of IMTG is regulated by FFA
availability, with decreased plasma FFA increasing the uti-
lization of IMTG during exercise in both lean individuals
and those with type 2 diabetes (77). In animal models,
IMTG decreases after an acute bout of hindlimb contraction
in obese but not lean rodents (81,82). It has also been
reported that IMTG content increased after acute exercise
(78) and that IMTG use occurs during recovery from
exercise in humans (83), although there are also data
showing no change in IMTG during recovery (84).

There is also evidence for sex-based differences in IMTG
use during exercise. Women have greater IMTG stores
compared with age- and BMI-matched men (85). Women
also appear to have greater utilization of IMTG during
exercise compared with men (85).

Acute exercise may also change IMTG localization, with
enhanced mobilization of IMTG from subsarcolemmal com-
pared with intermyofibrillar depots (86). Because subsarco-
lemmal IMTG is negatively related to insulin sensitivity, the
mobilization of this depot by exercise could be a mechanism
by which exercise is insulin sensitizing.
DAG. There are limited data on changes in muscle DAG
and sphingolipids in response to acute exercise. We found
that an acute bout of exercise did not change whole cell
DAG concentration in athletes and obese individuals with
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and without type 2 diabetes (63). Similar data have been
reported in rodents after an acute bout of exercise (87) and
using an isolated contracting hindlimb model in lean and
obese animals (81,82). Therefore, the total DAG pool
appears stable during acute exercise. However, it is not
clear whether acute exercise influences the relative pro-
portion of DAG isomers. IMTG lipolysis during exercise
liberates 1,3- and 2,3-DAG, which are not thought to
activate PKC and impact insulin sensitivity. Therefore,
IMTG utilization during exercise liberating 1,3- and 2,3-
DAG isomers along with unchanged DAG concentration
may indicate a decreased proportion of 1,2-DAG species.
It not known whether a shift in DAG isomers post-exercise
is yet another potential mechanism promoting insulin
sensitization with acute exercise.
Sphingolipids. In humans, acute exercise increases muscle
sphingosine, S1P, and ceramide in trained and untrained
individuals (12,46). The immediate post-exercise increase
may be due to an acute inflammatory response that drives
ceramide synthesis, which abates after recovery (75,88).
The activity of serine palmitoyltransferase, the rate-
limiting step in ceramide biosynthesis, has been shown to
increase with increasing duration of exercise in rodent
skeletal muscle, which may also contribute to an acute
increase in muscle ceramide content (89). After 2 h of re-
covery, sphingosine, S1P, and ceramide decrease to values
equal or less than those of the rest in human muscle (12).
Based on changes in mRNA expression, an increase in

ceramide clearance in recovery appears to promote de-
creased ceramide content (12). Skeletal muscle sphingo-
myelin increased after an acute bout of exercise in untrained,
but not trained, individuals, making it unlikely that sphin-
gomyelin degradation to ceramide explains post-exercise
ceramide accumulation (46). In an isolated contracting
hindlimb animal model, acute exercise did not alter muscle
ceramide content (90). However, in rodents acute exercise
has been shown to decrease both ceramides and sphingo-
myelin (87) or increase ceramides after exhaustion (89). It is
unclear why there appear to be differences in the effects of
acute exercise on ceramide accumulation in humans and
rodents. Dihydroceramides and glucosylceramides follow
a pattern similar to that of ceramide, with an increase in
content immediately post-exercise and decreasing to val-
ues similar to or less than rest after 2 h of exercise (12).
These changes may also promote insulin sensitization after
an acute bout of exercise (32).
Polar Lipids. LCA-CoA increased after an acute bout of
contraction in an isolated hindlimb model in both lean and
obese animals (81). Increased LCA-CoA occurred concom-
itantly with increased insulin sensitivity, suggesting that
LCA-CoA does not always promote decreased insulin sen-
sitivity, at least in rodents. The response to whole-body
exercise is variable, with no change (91) or increased concen-
tration (69) observed in rodents. Short-chain acylcarnitines
increased after acute exercise in rodents, with no changes or
an increase reported for short-, medium-, and long-chain

Figure 3—Impact of acute and chronic aerobic and resistance exercise training on content, species, and localization of lipids in skeletal
muscle in humans. CER, ceramide; dhCER, dihydroceramide; GluCER, glucosylceramide; SS, subsarcolemmal; TAG, triglyceride.
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acylcarnitines in humans (82). Combined, these data sug-
gest that the increase in insulin sensitivity from acute
exercise is not likely to be explained by alterations in the
content of LCA-CoA and acylcarnitines. The effect of acute
exercise on the diverse milieu of polar signaling lipids in
skeletal muscle is largely unknown.

Acute Resistance Exercise Effects on Muscle Lipids
IMTG. Similar to aerobic exercise, acute resistance exercise
decreases muscle IMCL content in humans (92) (Fig. 3).
The rate of utilization of IMTG during resistance exercise
appears to be in part dictated by the starting concentration
such that greater IMTG content results in increased rates
of IMTG degradation (92). After 2 h of recovery after
resistance exercise, IMCL content was unchanged (93) or
had returned to basal levels (94).
DAG, Sphingolipids, and Polar Lipids. Alterations in bio-
active lipids such as DAG, sphingolipids, and other polar
lipids such as acylcarnitines in response to acute resistance
exercise are unknown.

While the effect of acute resistance exercise on muscle
lipid content is not well studied, there is evidence that aging
and muscle lipids may interact to influence the anabolic
response to exercise. Aging is associated with increased
content of muscle lipids as well as attenuated anabolic
response to resistance exercise (95). It has also been shown
that ceramide accumulation is required for anabolic resis-
tance associated with inflammatory cytokine exposure in
myotubes (88). Therefore, it is possible that muscle sphin-
golipid content influences the ability of aging muscle to
adapt to resistance exercise, which promotes the develop-
ment of sarcopenia.

Chronic Exercise, Insulin Sensitivity, and Muscle Lipids

Insulin Sensitivity Increases After Chronic Aerobic and
Resistance Exercise
Chronic endurance exercise training is the cornerstone of
lifestyle interventions and consistently increases insulin
sensitivity (96). The training effect is not due solely to
glycogen depletion, as insulin sensitization remains long
after glycogen is replaced following the last exercise bout.
There are other mechanisms responsible for increased in-
sulin sensitivity including increased GLUT4 content, capil-
lary density, and mitochondrial content among others (97).
Our studies (12,13,17,44,45,64), and those of many others
(43,98), suggest that exercise-induced improvement in in-
sulin sensitivity may be related to changes in intramyocel-
lular lipids. Similar to aerobic exercise, chronic resistance
training is also effective at increasing insulin sensitivity in
humans (74,99). The data are mixed regarding whether
aerobic or resistance exercise is more effective than the
other to increase insulin sensitivity (100), and there is
a paucity of detailed mechanistic studies with resistance
training. Some investigators concluded that the increase
in muscle mass was responsible for greater glucose uptake
after resistance training (101), while some, but not all,
found that resistance training increased mitochondrial

density, oxidative capacity, and GLUT4 content, which
may influence insulin sensitivity (102). The metabolic and
physiologic stresses with resistance exercise are different
from those with aerobic exercise, and therefore it is likely
that molecular mechanisms for insulin sensitization as
well as changes in muscle lipid content and composition
are very different between these two exercise modalities.

Chronic Aerobic Exercise Alters Muscle Lipid Content
IMTG. The response of IMTG to chronic aerobic exercise
training is variable. In lean individuals, IMTG content
increases in response to aerobic exercise training (61),
although no changes have also been reported (103). How-
ever, in obese individuals with and without type 2 diabetes,
after chronic aerobic exercise training, IMTG has been
shown to increase (45), decrease (104), or not change
(43). When exercise training is combined with energy
restriction, most studies have found that IMTG content
remains unchanged in obese individuals (105). This is
likely due to the counterbalancing effect of energy re-
striction and weight loss to decrease IMTG and exercise
training to increase IMTG (10,45). The variability in the
response of IMTG to insulin-sensitizing chronic endur-
ance exercise training reinforces the idea that IMTG itself
does not impair insulin sensitivity.

Insulin-sensitizing exercise training has also been shown
to alter IMTG localization. After chronic aerobic training,
there was decreased subsarcolemmal and increased inter-
myofibrillar triglyceride size and number, as well as contact
with the mitochondrial reticulum, in lean and obese men
and women (60,61). Therefore, changes in IMTG localiza-
tion, even when there is no change in total content, may
play a role in increased insulin sensitivity.
DAG. Total DAG content has been reported to be higher in
endurance-trained athletes, creating another “athlete’s par-
adox” with DAG and insulin resistance. Chronic aerobic
exercise training, however, has been reported to decrease
muscle DAG content in overweight and obese individuals
(17,43–45). Endurance training may also alter the compo-
sition of DAG to be less saturated (43), which may impact
insulin sensitivity (13). However, no change in DAG content
has also been reported in lean and obese men and women
following insulin-sensitizing exercise training without
weight loss (60) and in obese men and women after
combined gastric bypass surgery and exercise training
(16). These data indicate that, while chronic endurance
exercise training can decrease whole cell DAG concen-
tration and composition, these changes are not required
for enhanced insulin sensitivity. One way to interpret
these data is that changes in whole cell muscle DAG
content with exercise training overlook important aspects
of DAG metabolism that influence insulin sensitivity. There
could be alterations in DAG isomers, species, and/or local-
ization after chronic training that have gone unnoticed. This
level of detail may help uncover specific species and com-
partments altered by exercise that impact insulin sensitiv-
ity. Thus, there is a need for intervention studies with
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detailed lipidomic analysis to elucidate interrelationships of
specific DAG isomers, species, and localization on changes in
insulin sensitivity.
Sphingolipids. Chronic aerobic exercise training with or
without weight loss typically decreases muscle ceramide
content (16,17,43,45,98). However, unchanged ceramide
content has also been reported following exercise training
with (106) and without (60) weight loss. Muscle sphingo-
sine and S1P content are unchanged in trained compared
with untrained individuals (12), as well as following ex-
ercise training with or without weight loss (16,17). The
response of other sphingolipids to chronic exercise training
is less well defined. Sphingomyelin decreased after 6 weeks
of exercise training in rats (107). Similar to DAG, ceramides
can also be uncoupled from insulin sensitivity. These data
suggest that total ceramide content is not always the main
factor in insulin resistance and raises questions about the
importance of specific species and/or localization that may
play an important role in insulin desensitization as reported
by others (13,35,55).
Polar Lipids. Longitudinal studies investigating changes
in polar lipids including LCA-CoA are scarce. However,
there does not appear to be a change in LCA-CoA after
chronic exercise training without weight loss in overweight
or obese individuals with and without type 2 diabetes
(104). It is possible that specific species of LCA-CoA could
be modified by exercise training; however, species-specific
information has not yet been published. Therefore, changes
in LCA-CoA content are unlikely to explain increased insulin
sensitivity after chronic aerobic exercise training. Changes
in muscle acylcarnitine content are also not likely to explain
the increases in insulin sensitivity, as acylcarnitines are in-
creased after chronic exercise training (108). Detailed studies
investigating changes in the breadth of polar lipids after
exercise training interventions are needed.

Chronic Resistance Exercise Alters Muscle Lipid
Content
IMTG. Similar to aerobic exercise, insulin-sensitizing chronic
resistance exercise training increased IMTG content (99). This
is yet another example of decoupling IMTG content to insulin
sensitivity.
DAG, Sphingolipids, andPolar Lipids. The impact of chronic
resistance training on DAG, sphingolipids, and polar lipid
content and composition has received little attention. Re-
sistance training alone does not alter muscle acylcarnitine
content, suggesting that increases in insulin sensitivity can-
not be explained by these lipids (108). Little is known
regarding how resistance training impacts muscle lipids.

Areas Needing Further Research
Human clinical investigations using acute and chronic
exercise experiments have promoted a better understand-
ing of how muscle lipids may be implicated in insulin
resistance and type 2 diabetes. While these studies rarely
identify precise molecular mechanisms, they can, through
reduction, eliminate or refute mechanism or causes. It

should also be emphasized that skeletal muscle insulin
resistance is complex and multifaceted and likely has many
causes and, thus, has many potential remedies.

While this review was focused mostly on triglyceride,
DAG, and sphingolipids, we acknowledge that the effects of
exercise on phospholipids are also likely important. There are
many classes of phospholipids, each with individual species,
as well as lysophospholipids and oxidized phospholipids, each
of which can play roles in cell signaling. A separate work
on the effects of exercise on phospholipid metabolism is
warranted.

Several areas of investigation will further our under-
standing of howmuscle lipids play a role in insulin resistance
and metabolic diseases. First, triglycerides are frequently
measured as one entity, yet we know that there are hundreds
of species that make up “triglyceride” based on combinatorial
probability for variable acyl side chains on each of the three
carbons of the glycerol backbone. Are there specific species of
triglyceride that promote decreased insulin sensitivity? How
does exercise training impact specific triglyceride species?
Does the localization of these species change with exercise?
Second,most of this reviewwas focused on the role of “static”
neutral lipids within muscle, since so few studies have in-
vestigated the dynamics or turnover of muscle lipids. A
popular hypothesis is that exercise increases IMTG turn-
over, which promotes insulin sensitivity by acting as a sink
into which LCA-CoA can be stored (109). High rates of
IMTG turnover and LCA-CoA esterification are thought to
prevent formation of bioactive lipids promoting decreased
insulin sensitivity. This has been shown experimentally in
both humans (110) and animals (111), and cross-sectional
comparisons also show a positive relationship between IMTG
synthesis rates and insulin sensitivity (63,65,66).

While the analysis of quantity and localization of mus-
cle lipids will continue to be critical, additional interroga-
tion of the molecular pathways that affect muscle lipids
and concomitant insulin sensitivity is imperative. It will be
important to understand whether acute and chronic exercise
impact muscle epigenetics that regulate insulin sensitization,
as well as alterations in the muscle phosphoproteome, e.g.,
FABP, acyl-CoA BP, and CERT, following aerobic and re-
sistance exercise that may impact muscle lipid content,
localization, and insulin sensitivity. The Molecular Trans-
ducers of Physical Activity Consortium (MoTrPAC) exercise
training study will be particularly useful to reveal molecular
regulation of muscle lipids after acute and chronic aerobic
and resistance exercise. Few studies have addressed non-PKC
DAG targets and how they could impact insulin sensitivity.
These types of studies, collectively, if performed in larger
numbers of subjects, could yield information about the
variation in responses to insulin-sensitizing interventions
such as exercise (most studies to date have been too small
to adequately determine biological response variation). Does
the degree of change in muscle lipid species and/or localiza-
tion influence the response variation for the change in insulin
sensitivity due to exercise? It will be critical to better un-
derstand how exercise training, with or without weight loss,
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influences muscle lipid localization and the change in insulin
sensitivity.

Conclusions
Accumulation of muscle lipids, specifically DAG and sphin-
golipids, is related to decreased insulin sensitivity in humans.
Specific species of lipids appear to playmore deleterious roles,
and more recent data indicate that localization of these lipid
species impacts their ability to induce or worsen insulin
resistance. Both aerobic and resistance exercise improve
insulin sensitivity, and each of these modalities appears to
impact accumulation of lipids in muscle. However, there is
much to learn regarding how acute and chronic exercise
training impacts the content and localization of specific
lipid species linked to insulin resistance. By understanding
how exercise alters specific species and isomers of bioactive
lipids, and how exercise changes localization of these lipids,
it may be possible to uncover specific lipids that most
heavily influence insulin sensitivity. Therefore, exercise will
continue to be a powerful experimental tool to elucidate
the complex relationships between muscle lipids and in-
sulin resistance.

Duality of Interest. No potential conflicts of interest relevant to this article
were reported.
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