PERSPECTIVES IN DIABETES
2163 Probing β-Cell Biology in Space and Time
R. Arrojo e Drigo

2174 What Regulates Basal Insulin Secretion and Causes Hyperinsulinemia?
B.E. Corkey, J.T. Deeney, and M.J. Merrins

COMMENTARIES
2183 Annexin 1 Mimetic Ac2-26 Holds Promise for the Treatment of Diabetic Nephropathy
Y. Pan, M.-Z. Zhang, and R.C. Harris

2185 Found in Translation: Novel Insights Into Type 1 Diabetes and β-Cell Biology
H.A. Russ and H.W. Davidson

2187 Type 2 Diabetes, Glycemia, and Brain Health: The Complexity of Causality
V. Srikanth

2190 Perirenal Fat and Chronic Kidney Disease in Patients With Diabetes
L. Roever, G. Tse, and G. Biondi-Zoccai

METABOLISM
2192 The Attenuation of Diabetic Nephropathy by Annexin A1 via Regulation of Lipid Metabolism Through the AMPK/PPARα/CPT1b Pathway

2204 Prohibitin Inactivation in Adipocytes Results in Reduced Lipid Metabolism and Adaptive Thermogenesis Impairment
Z. Gao, A.C. Daquinag, C. Fussell, A. Djehal, L. Desaubry, and M.G. Kolonin

2213 Mutations of NRG4 Contribute to the Pathogenesis of Nonalcoholic Fatty Liver Disease and Related Metabolic Disorders
Y. Li, L. Jin, F. Jiang, J. Yan, Y. Lu, Q. Yang, Y. Zhang, H. Zhang, H. Yu, Y. Zhang, Z. He, R. Zhang, J. Yang, and C. Hu

2225 Subcutaneous Adipose Tissue Metabolic Function and Insulin Sensitivity in People With Obesity

2237 Modulation of Glucose Production by Central Insulin Requires IGF-1 Receptors in AgRP Neurons
G. Farias Quiplidor, K. Mao, P.J. Beltran, N. Barzilai, and D.M. Huffman

2250 The Choline Metabolite TMAO Inhibits NETosis and Promotes Placental Development in GDM of Humans and Mice

2264 Chronic Antiabetic Actions of Leptin: Evidence From Parabiosis Studies for a CNS-Derived Circulating Antiabetic Factor

SIGNAL TRANSDUCTION
2275 Inhibition of IncRNA TCONS_00077866 Ameliorates the High Stearic Acid Diet-Induced Mouse Pancreatic β-Cell Inflammatory Response by Increasing miR-297b-5p to Downregulate SAA3 Expression

OBESITY STUDIES
2289 Sleeve Gastrectomy Suppresses Hepatic Glucose Production and Increases Hepatic Insulin Clearance Independent of Weight Loss

IMMUNOLOGY AND TRANSPLANTATION
2292 Long RNA Sequencing and Ribosome Profiling of Inflamed β-Cells Reveal an Extensive Translatome Landscape

COMPLICATIONS
2313 Relationship Between Glycemia and Cognitive Function, Structural Brain Outcomes, and Dementia: A Mendelian Randomization Study in the UK Biobank
Perirenal Fat Thickness Is Significantly Associated With the Risk for Development of Chronic Kidney Disease in Patients With Diabetes

X. Chen, Y. Mao, J. Hu, S. Han, L. Gong, T. Luo, S. Yang, H. Qing, Y. Wang, Z. Du, M. Mei, L. Zheng, X. Lv, Y. Tang, Q. Zhao, Y. Zhou, J.C. He, Q. Li, and Z. Wang

Insulin Resistance in Skeletal Muscle Selectively Protects the Heart in Response to Metabolic Stress


Intraglomerular Dysfunction Predicts Kidney Failure in Type 2 Diabetes


Contributions of Sodium-Hydrogen Exchanger 1 and Mitogen-Activated Protein Kinases to Enhanced Retinal Venular Constriction to Endothelin-1 in Diabetes

Y.-L. Chen, Y. Ren, R.H. Rosa Jr., L. Kuo, and T.W. Hein

SCO-267, a GPR40 Full Agonist, Stimulates Islet and Gut Hormone Secretion and Improves Glycemic Control in Humans


Profile of Podocyte Translatome During Development of Type 2 and Type 1 Diabetic Nephropathy Using Podocyte-Specific TRAP mRNA RNA-seq


The Low-Expression Variant of FABP4 Is Associated With Cardiovascular Disease in Type 1 Diabetes


Differential DNA Methylation and Expression of miRNAs in Adipose Tissue From Twin Pairs Discordant for Type 2 Diabetes


Pancreatic Differentiation of Stem Cells Reveals Pathogenesis of a Syndrome of Ketosis-Prone Diabetes

D. Yang, S. Patel, W.J. Szlachcic, J. Chmielowiec, D. Scaduto, N. Putluri, A. Sreekumar, J. Suliburk, M. Metzker, A. Balasubramanyam, and M. Borowiak

Issues and Events

On the cover: Electron microscopy of mouse exocrine and endocrine cells reveals differences in the cellular architecture of acinar, β-, α-, and δ-cells. A large acinar cell is seen in the top right quadrant, and α-, β-, and δ-cells are seen in the bottom left quadrant. The large nucleus, dense endoplasmic reticulum network, and sparse distribution of mitochondria in the acinar cell are striking in comparison with those in endocrine cells. Image courtesy of Rafael Arrojo e Drigo, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee. The article “Probing β-Cell Biology in Space and Time” appears in this issue of Diabetes, p. 2163.