












processing. Moreover, because the side chain of tryptophan
is rigid and bulkier than that for arginine (Fig. 4), introduc-
tion of the W739 variant may cause steric hindrance in the
binding interface. Thus, the R739W mutant has greater
potential to interrupt the interaction with furin. This could
be one reason why the processing of R739W was more
impaired than that of R739Q (Fig. 1A). Indeed, a similar
R762S mutant has also been found within the processing
site of INSR (41).

K720 is shown to be located in the aCT. Recently, sin-
gle-particle cryo-EM analysis revealed an IGF1R dimer com-
plex with IGF-1 or IGF-2 in the active state (27,42). For
K720E, we built a mutant model using the cryo-EM struc-
ture of IGF1R and IGF-2 complex in the active state (PDB
identifier 6VWI) to verify structural changes caused by
K720E in its active conformation. In an IGF1R dimer in its
active state, the IGF-1 binding site is shown to be formed
by the L1 and CR domains of one IGF1R protomer and the

Figure 3—Structural changes caused by the disease-associated variants and the likely benign variant in FnIIIs of IGF1R, except for the
insert domain. The residues constituting the folding nucleus are shown in orange and the hydrophobic core residues labeled red. Hydro-
phobic interactions are indicated by gray dashed lines. A: WT V629 (green) is predicted as the residue forming the folding nucleus within
FnIII-2. V629 is in contact with residues forming the hydrophobic core. Substitution of V629 with glutamic acid causes a steric clash with
I801, which is also a residue in the folding nucleus. B: Amino acid residues are displayed as sticks and space-filling models. C: WT Y865 is
in contact with the surrounding hydrophobic residues (I834, W852, I862, Y885, I905, and A907) in FnIII-3. Substitution of Y865 with a
smaller cysteine results in loss of contact with these residues, especially the hydrophobic core W852. D: Y865 (green), C865 (magenta),
and the key residues. E: N857 (light blue) is seen to be distant from the folding nucleus of FnIII-3. F: N857 and S857, with their side chain
exposed, do not interact with any other residues.
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aCT and FnIII-1 domains of the other (27,42). The side
chain of K720 on the aCT was estimated to form a salt
bridge with D519 in the FnIII-1 (27) (Supplementary Fig.
6). This salt bridge was assumed to be responsible for keep-
ing the spatial aCT position and stabilizing the IGF-1 bind-
ing site in the active conformation.

Substitution of K720 by glutamic acid with a negatively
charged side chain caused not only disruption of this salt
bridge but also electrostatic repulsion with D519, result-
ing in interruption of the interaction between the aCT
and FnIII-1 domain. Therefore, the K720E mutant in its
active conformation was predicted to reduce the stability
of the IGF-1 binding site, consequently affecting IGF-1
binding, which would result in reduced autophosphoryla-
tion, as observed in Fig. 1B. In contrast to the active
form, no structural change was predicted around E720 as

consequence of the K720E variant in an apo dimer of
IGF1R (PDB identifier 5U8R), suggesting no influence on
the structure of the K720E mutant in the inactive state,
which would lead to normal processing of the variant
receptor. These results are in agreement with the findings
of the functional analysis (Fig. 1). Noteworthy, it was
reported that the D734A mutant located on the aCT
domain of INSR is normally processed and that the vari-
ant distorted the insulin binding site in vitro (43).

DISCUSSION

In the current study, we assembled disease-associated
missense variants, as well as a variant classified as benign,
located in the FnIII-2 and -3 domains of IGF1R to per-
form a functional study of CHO cells, in which we found
impaired receptor processing or autophosphorylation in

Table 3—Results of structural analysis of missense variants of the FnIII domains in IGF1R causing growth retardation
Variant Location of variants Structural explanation Corresponding case in INSR

V629E FnIII (except for the ID)
The variant directly affects the

folding nucleus.
Group 1a: V657F, W659R,

Y818C, I925T

Y865C FnIII (except for the ID)

The variant affects the
hydrophobic core residues to
stabilize the domain structure.

Group 1b: L822P, R926W,
T937M

K720E aCT in the ID
The variant affects the IGF-1
binding site in its active form. D734A

R739Q, R739W The a-b cleavage site in the ID
The variant occurs in the

processing site. R762S

ID, insert domain.

Figure 4—Structural changes caused by the mutants located in the processing site of IGF1R. A: Structure of the FnIII-2 domain including
the insert domain with aCT and the processing site. R739 is seen to be located in the processing site (purple) of IGF1R. B: The amino acid
residues (sticks) of the a-b cleavage site. The R739Q and R739W mutants produced a conformational change from R-K-R-R to R-K-Q-R
and R-K-W-R, respectively, in the a-b cleavage site. These variants would result in loss of positive charge favorable for the protease furin.
Besides, the R739W variant introduces W739, with a bulkier side chain than that of R739. Residues involved in each variant (sticks and
space-filling models) are shown in green (WT) and magenta (mutant).
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cells expressing the previously reported disease-associated
variants of FnIII but not in those expressing the WT form
or the variant classified as benign. For disease-associated
variants (except for K720E located in the aCT), autophos-
phorylation signals seemed to correlate with the signals
of the corresponding protein expression; however, extremely
low expression of mature b-subunits makes it difficult to
clearly assess this (Fig. 1). In addition, we conducted an in
silico structural analysis of the missense variants in the FnIII
domains of IGF1R, which revealed that the disease-associ-
ated variants were predicted to lead to severely impaired
hydrophobic core formation and stability of the FnIII
domains or affect a-b cleavage sites. The likely benign vari-
ant was predicted not to impair the folding of the FnIII
domains or destabilize the domain structure, consistent
with the results of the above-mentioned functional study of
CHO cells. These results were also validated by our analyses
using the FoldX algorithm (Table 2) conducted to calculate
the free energy of WT and mutant proteins based on their
three-dimensional structures and to predict the effect of var-
iants on protein stability, while taking into account several
factors, such as hydrogen bonding, van der Waals, and
atomic clashes.

In our previous study, an in vitro functional experi-
ment suggested that the R739 variant in the processing
site could have a dominant-negative effect (23). In the
current study, cotransfection of WT and variants outside
the processing site, which impaired the a-b cleavage
(p.V629E and p.Y865C), substantially reduced autophos-
phorylation stimulated by IGF-1 (Supplementary Fig. 2),
suggesting that these variants could also have a domi-
nant-negative effect. As previously reported (23), one pos-
sibility is that the unprocessed IGF1R binds IGF-1, even
with low affinity, similar to the unprocessed INSR bound
to insulin (44), which prevents IGF-1 from binding to the
normally processed receptor. Although a theoretical possi-
bility cannot be denied, that patients who appeared to be
heterozygous for a nonsynonymous variant may have a
second disease-associated variant outside the coding
sequence, as reported in a previous analysis of INSR (45),
substantially impaired receptor function in the presence
of disease-associated variants (Fig. 1 and Supplementary
Fig. 2) suggests that the heterozygous disease-associated
variants here analyzed were responsible for the growth
retardation in those patients.

FnIII domains play important roles in receptor func-
tioning, such as ligand binding and processing, composed
of a b-sandwich with a Greek key motif and containing a
hydrophobic core constructed through the packing of two
antiparallel b-sheets (46,47). A previous study presented
the locations of amino acids in the variant forms of
IGF1R in a crystallographic structure (21), although a
complete structural explanation for the severity of disease
in patients carrying these variants was not provided. In
the current study, using the recently presented crystal
structures of the ectodomain of IGF1R, we conducted a

structural bioinformatics analysis of the missense variants
in the FnIII domains of IGF1R and provided detailed
structural explanations for the effect of these variants,
suggesting that in silico structural analysis of IGF1R var-
iants may prove useful for predicting the clinical severity
of variant-associated disease based on structural modifica-
tions in the structure of the receptor. In addition, we con-
ducted an in vitro functional study of these variants and
suggested a pathogenic role for disease-associated variants
(p.V629E, p.K720E, p.R739Q, p.R739W, and p.Y865C)
reported in previous studies (11,17,22,23), but not for a
likely benign variant (p.N857S) (Fig. 1), thus indicating
the effectiveness of the in silico structural analysis per-
formed in this study.

Relationships between the structural characteristics of
IGF1R variants and their pathogenicity appeared more or
less similar to the above-mentioned structure-phenotype
correlations in the FnIII variants of INSR reported in our
previous study (24), in which the FnIII variants of INSR
were divided into groups according to their structural
characteristics. Likewise, in the current study, we divided
the FnIII variants of IGF1R into groups to allow compari-
sons with the FnIII variants of INSR (24) (Table 3).
Intriguingly, each disease-associated FnIII variant of
IGF1R was shown to have structural characteristics simi-
lar to those of the INSR variants in some groups (Table
3), suggesting a similarity in the molecular mechanism of
structural modification between disease-associated FnIII
variants of IGF1R and INSR.

Recently, a number of studies have been conducted to
perform comprehensive genetic analyses in patients with
short stature or growth retardation, using whole-exome
sequencing (21,48,49) or next-generation sequencing-
based gene panel analysis containing a number of genes
including IGF1R (22). While such comprehensive genetic
studies may help further elucidate the genetic architecture
of growth retardation and have considerable potential to
establish more definitive genotype-phenotype correlations
in disease-associated IGF1R variants, it remains no less
important to evaluate newly identified variants for their
pathogenicity. The current study suggested that structural
bioinformatics analysis of candidate variants of IGF1R
may have a role to play as a primary screening method
before performance of functional biological experiments
that remain resource intensive and time intensive, as sug-
gested in the previous structural analysis of variants in
other genes (50,51). Indeed, these analyses may help pro-
vide supporting evidence for the pathogenicity of relevant
variants, according to the American College of Medical
Genetics and Genomics and the Association for Molecular
Pathology (ACMG-AMP) guideline (52). Successful identi-
fication of disease-associated variants of IGF1R in patients
with growth retardation is clinically important. For exam-
ple, lower efficacy of GH treatment could be anticipated
in advance in patients with growth retardation who carry
these variants compared with those who do not.
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In conclusion, through both in silico structural and in
vitro functional analyses, we demonstrated that the dis-
ease-associated mutants are predicted to severely impair
FnIII domain stability and hydrophobic core formation or
affect the processing site, while the variant classified as
benign is predicted not to affect FnIII domain folding or
lead to protein folding defects or significant destabilization
of the domain structure. Genotype-structure-phenotype
correlations in the FnIII variants of IGF1R were shown to
be consistent with those of INSR, highlighting the func-
tional importance of FnIII in both IGF1R and INSR. Dis-
ease-variant correlations, such as those suggested in this
study, should facilitate early diagnosis in patients with dis-
ease-associated IGF1R and INSR variants and provide valu-
able insights into the disease-causing mechanisms of these
receptors.
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