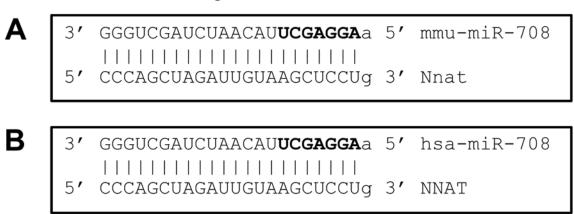
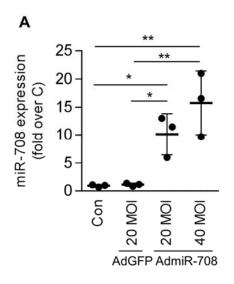
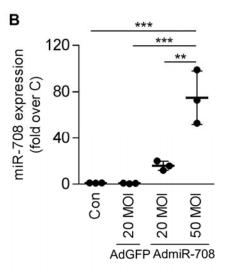
SUPPLEMENTARY DATA


Supplementary Table S1. Primer sequences used for gene expression analysis for qPCR.

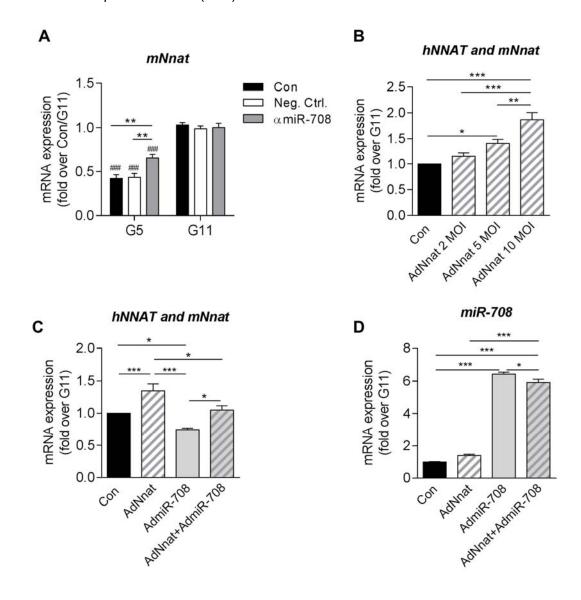
Gene	Species	Fw	Rv
Ddit3/Chop	Mouse	TCATCCCCAGGAAACGAAGAG	GCTTTGGGATGTGCGTGTG
Odz4	Mouse	CGGGCCAACTCCAACCTC	GCAGGCTGCTGGGATGATC
Nnat	Mouse	CACCCACTTTCGGAACCATG	GCACGCGGAAGATGTACCAG
Hprt1	Mouse	GGTTAAGCAGTACAGCCCCA	TCCAACACTTCGAGAGGTCC
Tbp1	Mouse	ACCCTTCACCAATGACTCCTATG	ATGATGACTGCAGCAAATCGC
Pdx1	Mouse	CCCCAGTTTACAAGCTCGCT	CTCGGTTCCATTCGGGAAAGG
Xbp1s	Mouse	GAACCAGGAGTTAAGAACACG	AGGCAACAGTGTCAGAGTCC
Atf6	Mouse	CATTTCGAAGGGATCATCTG	GTCTTGTGGTCTTGTTGTG
Atf3	Mouse	TCGGATGTCCTCTGCGCTGGA	CTGACTCTTTCTGCAGGCACTCTGT
Ddit/Chop	Rat	CCAGCAGAGGTCACAAGCAC	CGCACTGACCACTCTGTTTC
Tbp1	Rat	GAGATCACCCTGCAGCATCA	GCAGTGCCGCCCAAGTAG
Nnat	Rat	CAGCAGCCTCGGCAGAACT	CCCAGTAAATGCAGCATTCCAG
Nnat*	Mouse / Human	CTCGGCTGAACTGCTCATCA	GCAGCATTCCAGGAACACCT

^{*}These primers amplify both mouse and human neuronatin.


Supplementary Figure S1. miR-708 sequence perfectly matches a 3'UTR region of *Nnat* mRNA. (**A-B**) miR-708 sequence alignment of miR-708 from (**A**) mouse and from (**B**) human and the potential miR-708 binding site at *Nnat* 3'UTR from mouse (**A**) and human NNAT (**B**). Bold letters represent the seed sequence matching to the putative complementary site.


miR-708 / Nnat alignment

SUPPLEMENTARY DATA


Supplementary Figure S2. miR-708 overexpression in islets and in DICs. (A) miR-708 expression levels in non-transduced islets (Control) or islets transduced with AdGFP or AdmiR-708 (20 MOI and 40 MOI) 48h after transduction. (B) Dose-induced miR-708 overexpression in DICs transduced with AdmiR-708 20 MOI and 50 MOI 72h post-transduction. Further experiments were performed at 20 MOI given that miR-708 levels were similar to those induced by low glucose conditions. Results are expressed as mean \pm standard deviation from three independent experiments. *p<0.05, **p<0.01, ***p<0.001.

SUPPLEMENTARY DATA

Supplementary Figure S3. miR-708 inhibition and human neuronatin (*hNNAT*) and miR-708 overexpression in islets. (A) *Nnat* expression in non-treated islets (Con) or islets treated with a control microRNA (Neg. Ctrl.; 500nM) or with an inhibitor of miR-708 (αmiR-708; 500nM) during a 2-day culture at 5mM glucose (G5) or at 11mM glucose (G11). (**B**) Effects of different doses of *hNNAT*-encoding adenoviruses on the expression of endogenous (*mNnat*) and transgene (*hNNAT*) neuronatin in pancreatic islets cultured at 11mM glucose for 2.5 days. Further experiments were performed at 5 MOI AdNnat. The primers used for this analysis recognized both the murine and human forms of neuronatin. (**C**) Endogenous (*mNnat*) and transgene (*hNNAT*) neuronatin expression in islets non-transduced (Con) or transduced with AdNnat (5 MOI), AdmiR-708 (20 MOI) or with both adenoviruses. (**D**) miR-708 expression in the same experiment as in B. Note in Figure B that, as expected, endogenous Nnat levels are decreased when miR-708 is overexpressed, whereas co-transduction of miR-708 and *hNNAT* results in total *neuronatin* levels similar to those observed in control islets. Results are expressed as mean ± SEM from three independent experiments. *p<0.05, **p<0.01, ***p<0.001. ###p<0.001 to its respective control (G11).

