Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Research
Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus with Alterations of the γ-Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells.
Caterina Pipino, Hetal Shah, Sabrina Prudente, Natalia Di Pietro, Lixia Zeng, Kyoungmin Park, Vincenzo Trischitta, Subramanian Pennathur, Assunta Pandolfi, Alessandro Doria
Diabetes 2020 Jul; db200475. https://doi.org/10.2337/db20-0475
PreviousNext
  • Article
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Abstract

A chromosome 1q25 variant (rs10911021) has been associated with coronary heart disease (CHD) in type 2 diabetes (T2D). In human umbilical vein endothelial cells (HUVECs), the risk allele ‘C’ is associated with lower expression of the adjacent gene GLUL encoding glutamine synthase, converting glutamic acid to glutamine. To further investigate the mechanisms through which this locus affects CHD risk, we measured 35 intracellular metabolites involved in glutamic acid metabolism and γ−glutamyl cycle in 62 HUVEC strains carrying different rs10911021 genotypes. Eight metabolites were positively associated with the risk allele (17%-58% increase/allele copy, p=0.046-0.002), including five γ−glutamyl amino acids, β-citryl-glutamate, N-acetyl-aspartyl-glutamate, and ophthalmate - a marker of γ−glutamyl cycle malfunction. Consistent with these findings, the risk allele was also associated with decreased glutathione/glutamate ratio (-9%, p=0.012), decreased S-lactoylglutathione (-41%, p=0.019), and reduced detoxification of the atherogenic compound methylglyoxal (+54%, p=0.008). GLUL down-regulation by shRNA caused a 40% increase in methylglyoxal level, which was completely prevented by glutamine supplementation. In summary, we have identified intracellular metabolic traits associated with the 1q25 risk allele in HUVECs, including impairments of the γ−glutamyl cycle and methylglyoxal detoxification. Glutamine supplementation abolishes the latter abnormality, suggesting that such treatment may prevent CHD in 1q25 risk allele carriers.

Footnotes

  • This article contains supplementary material online at https://doi.org/10.2337/figshare.12616442.

  • Received May 5, 2020.
  • Accepted July 3, 2020.
  • © 2020 by the American Diabetes Association
https://www.diabetesjournals.org/content/license

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

PreviousNext
Back to top
Diabetes: 70 (3)

Current Issue

March 2021
Volume 70, Issue 3

  • Current Issue
  • Index by Author
  • Issue Archive
  • Podcasts
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus with Alterations of the γ-Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells.
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus with Alterations of the γ-Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells.
Caterina Pipino, Hetal Shah, Sabrina Prudente, Natalia Di Pietro, Lixia Zeng, Kyoungmin Park, Vincenzo Trischitta, Subramanian Pennathur, Assunta Pandolfi, Alessandro Doria
Diabetes Jul 2020, db200475; DOI: 10.2337/db20-0475

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus with Alterations of the γ-Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells.
Caterina Pipino, Hetal Shah, Sabrina Prudente, Natalia Di Pietro, Lixia Zeng, Kyoungmin Park, Vincenzo Trischitta, Subramanian Pennathur, Assunta Pandolfi, Alessandro Doria
Diabetes Jul 2020, db200475; DOI: 10.2337/db20-0475
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Low-dose ATG/GCSF in Established Type 1 Diabetes: A Five-Year Follow-up Report
  • The Relationship Between Glycaemia, Cognitive Function, Structural Brain Outcomes and Dementia: A Mendelian Randomisation Study in the UK Biobank
  • How Do We Move Type 1 Diabetes Immunotherapies Forward During the Current COVID-19 Pandemic?
Show more Original Research

Similar Articles

Subjects

  • Complications-Macrovascular-Cellular Mechanisms of Atherogenesis in Diabetes

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.