Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Research
Dynamic uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets
Manon Jaffredo, Eléonore Bertin, Antoine Pirog, Emilie Puginier, Julien Gaitan, Sandra Oucherif, Fanny Lebreton, Domenico Bosco, Bogdan Catargi, Daniel Cattaert, Sylvie Renaud, Jochen Lang, Matthieu Raoux
Diabetes 2021 Jan; db200214. https://doi.org/10.2337/db20-0214
PreviousNext
  • Article
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Abstract

Biphasic secretion is an autonomous feature of many endocrine micro-organs to fulfill physiological demands. The biphasic activity of islet β-cells maintains glucose homeostasis and is altered in type-2 diabetes. Nevertheless, underlying cellular or multicellular functional organizations are only partially understood. High-resolution non-invasive multi-electrode array recordings permit simultaneous analysis of recruitment, of single-cell and of coupling activity within entire islets in long-time experiments. Using this approach, we addressed the organizational modes of both, 1st and 2nd phase, in mouse and human islets under physiological and pathophysiological conditions. Our data provide a new uni- and multicellular model of islet β-cell activation: during the 1st phase, small but highly active β-cell clusters are dominant, whereas during the 2nd phase electrical coupling generates large functional clusters via multicellular slow potentials to favor an economic sustained activity. Post-prandial levels of glucagon-like peptide-1 (GLP-1) favor coupling only in the 2nd phase, whereas aging and glucotoxicity alter coupled activity in both phases. In summary, biphasic activity is encoded upstream of vesicle pools at the micro-organ level by multicellular electrical signals and their dynamic synchronization between β-cells. The profound alteration of the electrical organization of islets in pathophysiological conditions may contribute to functional deficits in type-2 diabetes.

Footnotes

  • This article contains supplementary material online at https://doi.org/10.2337/figshare.13562354.

  • Received March 2, 2020.
  • Accepted January 11, 2021.
  • © 2021 by the American Diabetes Association
https://www.diabetesjournals.org/content/license

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Diabetes: 70 (3)

Current Issue

March 2021
Volume 70, Issue 3

  • Current Issue
  • Index by Author
  • Issue Archive
  • Podcasts
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dynamic uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Dynamic uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets
Manon Jaffredo, Eléonore Bertin, Antoine Pirog, Emilie Puginier, Julien Gaitan, Sandra Oucherif, Fanny Lebreton, Domenico Bosco, Bogdan Catargi, Daniel Cattaert, Sylvie Renaud, Jochen Lang, Matthieu Raoux
Diabetes Jan 2021, db200214; DOI: 10.2337/db20-0214

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Dynamic uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets
Manon Jaffredo, Eléonore Bertin, Antoine Pirog, Emilie Puginier, Julien Gaitan, Sandra Oucherif, Fanny Lebreton, Domenico Bosco, Bogdan Catargi, Daniel Cattaert, Sylvie Renaud, Jochen Lang, Matthieu Raoux
Diabetes Jan 2021, db200214; DOI: 10.2337/db20-0214
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Effects of Gastric Bypass Surgery on the Brain; Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity and Cognitive Function during Normo- and Hypoglycemia
  • Low-dose ATG/GCSF in Established Type 1 Diabetes: A Five-Year Follow-up Report
  • The Relationship Between Glycaemia, Cognitive Function, Structural Brain Outcomes and Dementia: A Mendelian Randomisation Study in the UK Biobank
Show more Original Research

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.