PT - JOURNAL ARTICLE AU - Kuhlmann, Johanna AU - Neumann-Haefelin, Claudia AU - Belz, Ulrich AU - Kalisch, Jürgen AU - Juretschke, Hans-Paul AU - Stein, Marion AU - Kleinschmidt, Elke AU - Kramer, Werner AU - Herling, Andreas W. TI - Intramyocellular Lipid and Insulin Resistance AID - 10.2337/diabetes.52.1.138 DP - 2003 Jan 01 TA - Diabetes PG - 138--144 VI - 52 IP - 1 4099 - http://diabetes.diabetesjournals.org/content/52/1/138.short 4100 - http://diabetes.diabetesjournals.org/content/52/1/138.full SO - Diabetes2003 Jan 01; 52 AB - Insulin resistance plays an important role in the pathogenesis of human type 2 diabetes. In humans, a negative correlation between insulin sensitivity and intramyocellular lipid (IMCL) content has been shown; thus, IMCL becomes a marker for insulin resistance. Recently, magnetic resonance spectroscopy (MRS) has been established as a dependable method for selective detection and quantification of IMCL in humans. To validate the interrelation between insulin sensitivity and IMCL in an animal model of type 2 diabetes, we established volume selective 1H-MRS at 7 Tesla to noninvasively assess IMCL in the rat. In male obese Zucker Diabetic Fatty rats and their lean littermates, IMCL levels were determined repeatedly over 4 months, and insulin sensitivity was measured by the euglycemic-hyperinsulinemic clamp method at 6–7 and at 22–24 weeks of age. A distinct relation between IMCL and insulin sensitivity was demonstrated as well as age dependence for both parameters. Rosiglitazone treatment caused a clear reduction of IMCL and hepatic fat despite increased body weight, and a marked improvement of insulin sensitivity. Thus, the insulin sensitizing properties of rosiglitazone were consistent with a redistribution of lipids from nonadipocytic (skeletal muscle, liver) back into fat tissue.