RT Journal Article SR Electronic T1 Inhibition of Fructose 1,6-Bisphosphatase Reduces Excessive Endogenous Glucose Production and Attenuates Hyperglycemia in Zucker Diabetic Fatty Rats JF Diabetes JO Diabetes FD American Diabetes Association SP 1747 OP 1754 DO 10.2337/db05-1443 VO 55 IS 6 A1 van Poelje, Paul D. A1 Potter, Scott C. A1 Chandramouli, Visvanathan C. A1 Landau, Bernard R. A1 Dang, Qun A1 Erion, Mark D. YR 2006 UL http://diabetes.diabetesjournals.org/content/55/6/1747.abstract AB Gluconeogenesis is increased in type 2 diabetes and contributes significantly to fasting and postprandial hyperglycemia. We recently reported the discovery of the first potent and selective inhibitors of fructose 1,6-bisphosphatase (FBPase), a rate-controlling enzyme of gluconeogenesis. Herein we describe acute and chronic effects of the lead inhibitor, MB06322 (CS-917), in rodent models of type 2 diabetes. In fasting male ZDF rats with overt diabetes, a single dose of MB06322 inhibited gluconeogenesis by 70% and overall endogenous glucose production by 46%, leading to a reduction in blood glucose of >200 mg/dl. Chronic treatment of freely feeding 6-week-old male Zucker diabetic fatty (ZDF) rats delayed the development of hyperglycemia and preserved pancreatic function. Elevation of lactate (∼1.5-fold) occurred after 4 weeks of treatment, as did the apparent shunting of precursors into triglycerides. Profound glucose lowering (∼44%) and similar metabolic ramifications were associated with 2-week intervention therapy of 10-week-old male ZDF rats. In high-fat diet–fed female ZDF rats, MB06322 treatment for 2 weeks fully attenuated hyperglycemia without evidence of metabolic perturbation other than a modest reduction in glycogen stores (∼20%). The studies confirm that excessive gluconeogenesis plays an integral role in the pathophysiology of type 2 diabetes and suggest that FBPase inhibitors may provide a future treatment option.